
1/26/2012

1

Object-Oriented Design

No SVN checkout today

1/26/2012

2

� Software development methods

� Object-oriented design with CRC cards

� LayoutManagers for Java GUIs

� BallWorlds work time

1/26/2012

3

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Software
Development

� Standardized approaches intended to:
◦ Reduce costs

◦ Increase predictability of results

� Examples:
◦ Waterfall model

◦ Spiral model

◦ “Rational Unified Process”

1/26/2012

4

� Do each stage to completion
� Then do the next stage

Pipe dream model?

Analysis

Design

Implementation

Testing

Deployment

� Repeat phases in a cycle

� Produce a prototype at end of each cycle

� Get early feedback, incorporate changes

� Schedule overruns
� Scope creep

Deployment

PrototypePrototype

1/26/2012

5

� Like the spiral model with veryveryveryvery short cycles

� Pioneered by Kent Beck

� One of several “agile” methodologies, focused
on building high quality software quickly

� Rather than focus on rigid process, XP
espouses 12 key practices…

� Realistic planning

� Small releases

� Shared metaphors

� Simplicity

� TestingTestingTestingTesting

� RefactoringRefactoringRefactoringRefactoring

� Pair programmingPair programmingPair programmingPair programming

� Collective ownership

� Continuous integration

� 40-hour week

� On-site customer

� Coding standardsCoding standardsCoding standardsCoding standards

When you see
opportunity to make
code better, do it

Use descriptive
names

Q1

1/26/2012

6

A practical technique

� We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

� We will practice a common object-oriented
design technique using CRC CardsCRC CardsCRC CardsCRC Cards

� Like any design technique,
the key to success is practicethe key to success is practicethe key to success is practicethe key to success is practice

1/26/2012

7

1.1.1.1. Discover classes Discover classes Discover classes Discover classes based on
requirements

2.2.2.2. Determine responsibilities Determine responsibilities Determine responsibilities Determine responsibilities of
each class

3.3.3.3. Describe relationships Describe relationships Describe relationships Describe relationships between
classes

Q2

� Brainstorm a list of possible classes
◦ Anything that might work

◦ No squashing

1/26/2012

8

� Prompts:
◦ Look for nounsnounsnounsnouns

◦ Multiple objects are often created from each class

� So look for plural conceptsplural conceptsplural conceptsplural concepts

◦ Consider how much detail a concept requires:

� A lot? Probably a class

� Not much? Perhaps a primitive type

� Don’t expect to find them all � add as needed

Tired of hearing this yet?

� Look for verbsverbsverbsverbs in the requirements to identify
responsibilitiesresponsibilitiesresponsibilitiesresponsibilities of your system

� Which class handles the responsibility?

� Can use CRC Cards CRC Cards CRC Cards CRC Cards to discover this:

◦ CCCClasseslasseslasseslasses

◦ RRRResponsibilitiesesponsibilitiesesponsibilitiesesponsibilities

◦ CCCCollaboratorsollaboratorsollaboratorsollaborators

1/26/2012

9

� Use one index card per class

Class name

CollaboratorsResponsibilities

Q3

1. Pick a responsibilityresponsibilityresponsibilityresponsibility of the program

2. Pick a classclassclassclass to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?
◦ Yes � Return to step 1

◦ No �

� Decide which classes should help

� List them as collaboratorscollaboratorscollaboratorscollaborators on the first card

� Add additional responsibilities to the collaborators’
cards

1/26/2012

10

� Spread the cards out Spread the cards out Spread the cards out Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

� Use a “token” Use a “token” Use a “token” Use a “token” to keep your place
◦ A quarter or a magnet

� Focus on highFocus on highFocus on highFocus on high----level responsibilitieslevel responsibilitieslevel responsibilitieslevel responsibilities
◦ Some say < 3 per card

� Keep it informalKeep it informalKeep it informalKeep it informal
◦ Rewrite cards if they get too sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

These go to 11

1/26/2012

11

� Classes usually are related to their
collaborators

� Draw a UML class diagram showing how

� Common relationships:
◦ InheritanceInheritanceInheritanceInheritance: only when subclass is ais ais ais a special case

◦ AggregationAggregationAggregationAggregation: when one class has ahas ahas ahas a fieldfieldfieldfield that
references another class

◦ DependencyDependencyDependencyDependency: like aggregation but transient, usually
for method parameters, “has a” temporarily“has a” temporarily“has a” temporarily“has a” temporarily

◦ AssociationAssociationAssociationAssociation: any other relationship, can label the
arrow, e.g., constructsconstructsconstructsconstructs

NEW!

Q4

1/26/2012

12

Draw UML class diagrams based on
your CRC cards

Initially just show classes
(not insides of each)

Add insides for two classes

When JFrame’s and JPanel’s
defaults just don’t cut it.

1/26/2012

13

� Answer: 5

� We use the two-argument version of add:

� JPanel p = new JPanel();
frame.add(p, BorderLayout.SOUTH);

� JFrame’s default LayoutManager
is a BorderLayout

� LayoutManager instances
tell the Java library how to
arrange components

� BorderLayout uses up to five
components

Q5

� Answer: arbitrarily many

� Additional components are added in
a line

� JPanel’s default LayoutManager
is a FlowLayout

1/26/2012

14

� We can set the layout manager of a JPanel
manually if we don’t like the default:

JPanel panel = new JPanel();
panel.setLayout(new GridLayout(4,3));
panel.add(new JButton("1"));
panel.add(new JButton("2"));
panel.add(new JButton("3"));
panel.add(new JButton("4"));
// ...
panel.add(new JButton("0"));
panel.add(new JButton("#"));
frame.add(panel);

� A LayoutManager determines how components are
laid out within a container

• BorderLayout. When adding a component, you specify
center, north, south, east, or west for its location. (Default
for a JFrame.)

• FlowLayout: Components are placed left to right. When
a row is filled, start a new one. (Default for a JPanel.)

• GridLayout. All components same size, placed into a 2D
grid.

• Many others are available, including BoxLayout,
CardLayout, GridBagLayout, GroupLayout

• If you use null for the LayoutManager, then you must
specify every location using coordinates

� More control, but it doesn’t resize automatically

Q6

1/26/2012

15

� Chapter 18 of Big Java

� Swing Tutorial
◦ http://java.sun.com/docs/books/tutorial/ui/index.html

◦ Also linked from schedule

BallWorlds

Q7-Q8

