
1/24/2012

1

Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Check out Inheritance2 from SVN

1/24/2012

2

� On ANGEL, under Lessons � Assignments
� Preferences help me to choose teams; I also consider your
performance so far in the course

� Complete the survey by Wednesday noon
� Most teams will have 3 students
� Are you willing to be on a team of 2
� List up to 5 students you'd like to work with, highest
preference first.
◦ You may not get your first choices, so it's a good idea to
list more than two
◦ Best to choose partners whose commitment level and
current Java coding/debugging ability is similar to yours

� List up to 2 students you'd prefer NOT to work with
◦ I'll do my best to honor this, but I must find a team for
everyone. (What if you don't complete the survey?)

A quick recap of last session

1/24/2012

3

� Sometimes a new class is a a a a
special case special case special case special case of the concept
represented by another

� Can “borrow” from an
existing class, changing just
what we need

� The new class inheritsinheritsinheritsinherits from
the existing one:
◦ all methods

◦ all instance fields

� class SavingsAccount extends BankAccount {
// added fields
// added methods

}

� Say “SavingsAccount is ais ais ais a BankAccount”

� SuperclassSuperclassSuperclassSuperclass: BankAccount

� SubclassSubclassSubclassSubclass: SavingsAccount

1/24/2012

4

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

� InheritInheritInheritInherit methods unchanged

� OverrideOverrideOverrideOverride methods
◦ Declare a new method with same signature to use
instead of superclass method

� AddAddAddAdd entirely new methods not in superclass

1/24/2012

5

� ALWAYS inheritALWAYS inheritALWAYS inheritALWAYS inherit all fields unchanged

� Can addCan addCan addCan add entirely new fields not in superclass

DANGER! Don’t use
the same name as a
superclass field!

� Calling superclass methodmethodmethodmethod:

◦ super.methodName(args);

� Calling superclass constructorconstructorconstructorconstructor:

◦ super(args);

Must be the first
line of the subclass

constructor

1/24/2012

6

� public—any code can see it

� private—only the class itself can see it

� defaultdefaultdefaultdefault (i.e., no modifier)—only code in the
same packagepackagepackagepackage can see it

� protected—like default, but subclasses also
have access

The superest class in Java

1/24/2012

7

� EveryEveryEveryEvery class in Java inherits from Object

◦ Directly and explicitlyexplicitlyexplicitlyexplicitly:

� public class String extends Object {…}

◦ Directly and implicitlyimplicitlyimplicitlyimplicitly:

� class BankAccount {…}

◦ IndirectlyIndirectlyIndirectlyIndirectly:

� class SavingsAccount extends BankAccount {…}

Q1

� String toString()

� boolean equals(Object otherObject)

� Class getClass()

� Object clone()

� …

Often overridden

Sometimes useful

Often dangerous!

Q2

1/24/2012

8

� Return a concise, human-readable summary
of the object state

� Very useful because it’s called automatically:
◦ During string concatenation

◦ For printing

◦ In the debugger

� getClass().getName() comes in handy
here…

Q3

� Should return true when comparing two
objects of same type with same “meaning”

� How?
◦ Must check types—use instanceof

◦ Must compare state—use castcastcastcast

� Example…

Q4

1/24/2012

9

Review and Practice

� A subclass instance is ais ais ais a superclass instance
◦ Polymorphism still works!

◦ BankAccount ba = new SavingsAccount();
ba.deposit(100);

� But not the other way around!

◦ SavingsAccount sa = new BankAccount();
sa.addInterest();

� Why not?
BOOM!

1/24/2012

10

� Can use:
◦ public void transfer(double amt, BankAccount o){

this.withdraw(amount);
o.deposit(amount);

}

in BankAccount

� To transfer between different accounts:
◦ SavingsAccount sa = …;

◦ CheckingAccount ca = …;

◦ sa.transfer(100, ca);

� If B extends or implements A, we can write

A x = new B();

Declared type tells which
methods x can access.
Compile-time error if try to
use method not in A.

The actual type tells which
class’ version of the
method to use.

� Can cast to recover methods from B:

((B)x).foo()

Now we can access all of
B’s methods too.

If x isn’t an instance of
B, it gives a run-time
error (class cast
exception) Q5-7, hand in when done, then start reading BallWorlds spec

1/24/2012

11

• Meet your partner

• Carefully read the
requirements and provided
code

• Ask questions (instructor and
TAs).

• In a few minutes, we’ll code
Pulsar together

Check out BallWorlds from SVN

csse220-201220-BW10,ameslc,smithgb

csse220-201220-BW11,koestedj,watterlm

csse220-201220-BW12,harrissa,rujirasl

csse220-201220-BW13,mcculfpe,toorha

csse220-201220-BW14,campbeeg,murphysw

csse220-201220-BW15,conwaygt,swenseen

csse220-201220-BW16,postcn,satchwsm

csse220-201220-BW17,dingx,gartzkds,harbisjs

csse220-201220-BW18,janeiraj,wangl2

csse220-201220-BW19,jacksoam,weirjm

1/24/2012

12

Check out BallWorlds from SVN

csse220-201220-BW20, morrista,olsonmc
csse220-201220-BW21,dialkc,piliseal
csse220-201220-BW22,lockarbm,minardar
csse220-201220-BW23,robinsdp,suttonjj
csse220-201220-BW24,riechelp,sanderej
csse220-201220-BW25,mccullwc,kodamach
csse220-201220-BW26,naylorbl,huangz,
csse220-201220-BW27,tuckerme,pearsojw
csse220-201220-BW28,modivr,sternetj
csse220-201220-BW29,faulknks,yuhasem

Check out BallWorlds from SVN

csse220-201220-BW31,ruthat,smithnf

csse220-201220-BW32,lucekm,sturgedl

csse220-201220-BW33,coxap,oharace

csse220-201220-BW34,glenngs,timaeudg

csse220-201220-BW35,freemal,mengx

csse220-201220-BW36,wuj,whiteer

csse220-201220-BW37,belkat,oakesja

csse220-201220-BW38,moorejm,bollivbd,cookmj

csse220-201220-BW39,maxwellh,qinz

1/24/2012

13

Pulsar
Continue with Mover, etc.

Because this is a challenging assignment, we’ll let you
turn BallWorlds in before Friday at noon for full credit.
If you miss that deadline, you may turn it in by
Saturday at 11:59 p.m. for 90% credit.

