
Details on class implementation,
Interfaces and Polymorphism

Check out OnToInterfaces from SVN

 Variable scope
 Packages recap
 Interfaces and polymorphism

 Scope: the region of a program in which a
variable can be accessed
◦ Parameter scope: the whole method body
◦ Local variable scope: from declaration to block end:
 public double area() {
 double sum = 0.0;
 Point2D prev =
 this.pts.get(this.pts.size() - 1);
 for (Point2D p : this.pts) {
 sum += prev.getX() * p.getY();
 sum -= prev.getY() * p.getX();
 prev = p;
 }
 return Math.abs(sum / 2.0);
} Q1

 Member scope: anywhere in the class,
including before its declaration
◦ This lets methods call other methods later in the

class.

 public static class members can be
accessed from outside with “class qualified
names”
◦ Math.sqrt()
◦ System.in

Q2

public class TempReading {
 private double temp;

 public void setTemp(double temp) {
 … temp …

 }
 // …
}

 this.temp = temp;

What does this
“temp” refer

to? Always qualify field references
with this. It prevents accidental

shadowing.
Q3

 Static imports let us use unqualified names:
◦ import static java.lang.Math.PI;
◦ import static java.lang.Math.cos;
◦ import static java.lang.Math.sin;

 See the polygon.drawOn() method in the
DesigningClasses project

 Packages let us group
related classes

 We’ve been using them:
◦ javax.swing
◦ java.awt
◦ java.lang

 Java built-in Timer class?
◦ java.util.Timer, javax.swing.Timer
◦ Packages allow us to specify which we want to use.

 Package naming convention: reverse URLs
◦ Examples:
 edu.roseHulman.csse.courseware.scheduling
 com.xkcd.comicSearch

Specifies the
company or
organization

Groups related
classes as

company sees fit

Q4

 Can use import to get classes from other
packages:
◦ import java.awt.Rectangle;

 Suppose we have our own Rectangle class
and we want to use ours and Java’s?
◦ Can use “fully qualified names”:
 java.awt.Rectangle rect =
 new java.awt.Rectangle(10,20,30,40);

◦ U-G-L-Y, but sometimes needed.

 Express common operations that multiple
classes might have in common

 Make “client” code more reusable

 Provide method signatures and
documentation

 Do not provide method implementations or
fields

 Interface types are like contracts

◦ A class can promise to implement an interface
 That is, implement every method

◦ Client code knows that the class will have those

methods
 Compiler verifies this

◦ Any client code designed to use the interface type

can automatically use the class!

Charges Demo

I don’t even want this
package. Why did I

sign up for the
stinging insect of the
month club anyway?

Distinguishes
interfaces

from classes

Hollow,
closed

triangular
tip means

PointCharge
is a Charge

Q5

public interface Charge {
 /**
 * regular javadocs here
 */
 Vector forceAt(int x, int y);

 /**
 * regular javadocs here
 */
 void drawOn(Graphics2D g);
}

public class PointCharge implements Charge {
 …
}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

PointCharge promises to implement all the
methods declared in the Charge interface

Interfaces reduce coupling! Q6

 Can pass an instance of a class where an
interface type is expected
◦ But only if the class implements the interface

 We passed LinearCharges to Space’s
addCharge(Charge c) method without
changing Space!

 Use interface types for field, method
parameter, and return types whenever
possible

Q7

 Origin:
◦ Poly  many
◦ Morphism  shape

 Classes implementing an interface give many
differently “shaped” objects for the interface
type

 Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

Q8-Q9

Homework 17: Board Games
Homework 17-18: BigRational

	CSSE 220 Day 17
	Questions?
	Today
	Variable Scope
	Member (Field or Method) Scope
	Overlapping Scope and Shadowing
	Last Bit of Static
	Review: Packages
	Avoiding Package Name Clashes
	Qualified Names and Imports
	Interface Types
	Interface Types: Key Idea
	Example
	Package Tracking
	Charges UML
	Notation: In Code
	Updated Charges UML
	How does all this help reuse?
	Polymorphism
	Work Time

