
Sierpiński, Recursion and
Efficiency, Mutual Recursion

Checkout Recursion2 project from SVN

 Any method that calls itself
◦ On a simpler problem
◦ So that it makes progress toward completion
◦ Indirect recursion: May call another method which

calls back to it.

 When implementing a recursive definition
 When implementing methods on recursive

data structures

 Where parts of the whole look like smaller
versions of the whole

 Q1

 The pros
◦ easy to implement,
◦ easy to understand code,
◦ easy to prove code correct

 The cons
◦ Sometimes takes more space and time than

equivalent iterative solution
◦ Why?
 because of function calls

Q2

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution
◦ Just consider one step at a time

http://recursivelyrecursive.files.wordpress.com/2010/11/clip_image002.jpg

HW 11 & 13: Sierpinski Triangle

 Why does recursive Fibonacci take so long?!?

 Can we fix it?

Q3

 Save every solution we find to sub-problems

 Before recursively computing a solution:
◦ Look it up
◦ If found, use it
◦ Otherwise do the recursive computation

Q4

 2 or more methods call each other repeatedly
◦ E.g., Hofstadter Female and Male Sequences

◦ In how many positions do the sequences differ

among the first 50 positions? first 500? first 5,000?
first 5,000,000?

Q5

http://en.wikipedia.org/wiki/Hofstadter_sequence

http://en.wikipedia.org/wiki/Hofstadter_sequence

HW 13: Sierpinski Carpet
Game of Life (Pair
programming)

Q6-7

	CSSE 220�Day 12
	Slide Number 2
	Recap: What are recursive methods?
	When should recursive methods be used?
	The pros and cons of recursive methods
	Recap: Key Rules to Using Recursion
	Slide Number 8
	HW: Sierpinski
	Work Time
	Can one little Fib hurt?
	Memoization
	Mutual Recursion
	Slide Number 15
	Work Time

