

CSSE 220 Day 11
 Recursion

Checkout Recursion project from SVN

Packages

- Let us group related classes
- We've been using them:
- javax.swing
- java.awt
- java. 7 ang

Can (and should) group our own code into packages

- Eclipse makes it easy...

Gödel, Escher, Bach

- By Douglas Hofstadter
- Argues that a major component of intelligence is our ability to think about thinking

An example - Triangle Numbers

- If each red block has area 1 , what is the area A(n) of the Triangle whose width is n ?
Answer:

$$
A(n)=n+A(n-1)
$$

- The above holds for which n ? What is the answer for other n ?
- Answer: The recursive equation holds for $\mathrm{n}>1$.
For $\mathrm{n}=1$, the area is 1 .

Frames for Tracing Recursive Code

1. Draw box when method starts
2. Fill in name and first line no.
3. Write class name (for static method) or draw reference to object (for non-static method)
scope box
4. List every parameter and its argument value.
5. List every local variable declared in the method, but no values yet

Thanks to David Gries for this technique
6. Step through the method, update the line number and variable values, draw new frame for new calls
7. "Erase" the frame when the method is done.

Key Rules to Using Recursion

- Always have a base case that doesn't recurse
- Make sure recursive case always makes progress, by solving a smaller problem
- You gotta believe
- Trust in the recursive solution
- Just consider one step at a time

Programming Problem

- Add a recursive method to Sentence for computing
whether Sentence is
a palindrome

Recursive Helpers

- Our isPalindrome() makes lots of new Sentence objects
- We can make it better with a "recursive helper method"
- Many recursive problems require a helper method
public boolean isPalindrome() \{
return isPalindrome(0, this.text.length() - 1);
\} remaining String to check

Homework part 1

- Reverse a string...recursively!
- A recursive helper can make this really short!

Another Definition of Recursion

- "If you already know what recursion is, just remember the answer. Otherwise, find someone who is standing closer to Douglas Hofstadter than you are; then ask him or her what recursion is."
-Andrew Plotkin

Recursive Functions

- Factorial:

$$
n!= \begin{cases}1 & \text { if } n \leq 1 \\ n *(n-1)! & \text { otherwise }\end{cases}
$$

- Ackermann function:

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ A(m-1, A(m, n-1)) & \text { otherwise }\end{cases}
$$

