CSSE 220 Day 8
 Arrays, ArrayLists, Wrapper Classes, Auto-boxing, Enhanced for loop

Questions?

Exam 1 is Next Monday a week from Thursday!

- Thursday, September 29, in-class
- Over chapters 1-7
- You'll have a chance to ask questions about anything in Thursday's class.
- See Session 10 on the Schedule Page schedule for Exam 1 samples
If there's anything that you're confused about, get it straight this week. Visit any of the following for help:
Claude (out this week), David or Delvin CSSE assistants in F-217, 7 to 9 p.m. Maybe: Special Help Session TBA

Array Types

- Group a collection of objects under a single name
- Elements are referred to by their position, or index, in the collection ($0,1,2, \ldots$)
- Syntax for declaring: El ement Type[] name
- Declaration examples:
- A local variable: doubl e[] averages;
- Parameters: pulbl ic int nax(int[] vall ues) \{..\}
- A field: pri vate I nvest nent [] mut ual Funds;

Allocating Arrays

- Syntax for allocating: newEl erent Type[I engt h]
- Creates space to hold values
- Sets values to defaults
- O for number types
- fall se for boolean type
- null If for object types
, Examples:

- double[] polls = new doubl e[50];
-int[] el ecVotes = newint[50]; Dog[] dogs = new Dog[50]:

This does NOT construct any Dogs. It just allocates space for referring to Dogs (all the Dogs start out as null)

Reading and Writing Array Elements

- Reading:
- doubl e exp = polls[42] * el ecVotes[42];

Sets the value in slot 37.

- el ecVotes[37] = 11;

Index numbers run from 0 to array length - 1
, Getting array length: el ecVotes. I engt h
No parentheses, array length is (like) a field

Arrays: Comparison Shopping

Arrays...	Java	C	Python
have fixed length	yes	yes	no
are initialized to default values	yes	no	n/a
track their own length	yes	no	yes
trying to access "out of bounds" stops program before worse things happen	yes	no	yes

Live Coding

, Investigating the Law of Large Numbers

- A simulation using dice
, Design
, Implementation (together)
, Begin the RollingDice program for HW8 (in ArraysAndLists)

What if we don't know how many elements there will be?

- ArrayLists to the rescue
- Example:

- ArrayLi st \langle State> states $=$ new ArrayLi st \langle State>();

st at es. add(new St at e("I ndi ana", 11, . 484, . 497)) ;
- Ar raylii st is a generic class
- Type in <brackets> is called a type parameter

ArrayList Gotchas

- Type parameter can't be a primitive type
- Not: ArrayLi st বint> runs;
- But: ArrayLi st \langle l nt eger > runs;
- Use get method to read elements
- Not: runs[12]
- But: runs. get (12)
- Use size() not length
- Not: runs. I ength
- But: runs. si ze()

Lots of Ways to Add to List

- Add to end:
- vi ct ori es. add(new Wbrl dSeri es(2011)) ;
- Overwrite existing element:
- vi ct ori es. set (0, new Wbrl dSeri es(1907));
- Insert in the middle:
- vi ctori es. add(1, new Wbrl dSeri es(1908));
- Pushes elements at indexes 1 and higher up one
- Can also remove:
- vi ctories. renove(vi ctories.size() - 1)

Live Coding

Continue RollingDice

So, what's the deal with primitive types?

- Problem:
- ArrayList's only hold objects
- Primitive types aren't objects
- Solution:
- Wrapper classes-instances are used to "turn" primitive types into objects
- Primitive value is stored in a field inside the object

Primitive	Wrapper
byte	Byte
boolean	Boolean
char	Character
double	Double
float	Float
int	Integer
long	Long
short	Short

Auto-boxing Makes Wrappers Easy

- Auto-boxing: automatically enclosing a primitive type in a wrapper object when needed
- Example:
- You write: IInteger m=6;
- Java does: II nt eger $m=$ new I nt eger (6);
- You write: Integer answer = m* 7;
- Java does: iint temp = miint Vall ue() * 7;

I nt eger answer = new Integer(tenp);

Auto-boxing Lets Us Use ArrayLists with Primitive Types
 - Just have to remember to use wrapper class for list element type

- Example:
-ArrayLi st $<$ nt eger > runs =
new ArrayLi st \langle nt eger >() ;
runs. add(9); // 9 is auto-boxed
-int r = runs. get(0); // result is unboxed

Enhanced For Loop and Arrays

- Old school
double scores[] = ...
doubl e sum = 0 . 0 ;
for (int i=0; i < scores.length; il+) \{ sum += scores[i];
\}
- New, whiz-bang, enhanced for loop
double scores[] = ...
doubl e sum = 0 . 0 ;
for (doubl e score : scores) \{ sum += score;
$>$ No index variable (easy, but limited in 2 respects)
> Gives a name (score here) to each element

Enhanced For and ArrayList's

- ArrayList<State> states = ... int total = 0; for (State state : states) \{ total += state.getElectoralVotes(); \}

Live Coding

Finish RollingDice, then continue on HW 8.

