
Console Input, Text Formatting,
Decision Statements and Expressions

Check out Decisions from SVN

 String Input and Output

 Quick review of if statements

 == vs. equals()

 Selection operator, ? :

 Optional: switch and enumerations

 In Python:

◦ “This is a string”

◦ ‘and so is this’

 In Java:

◦ “This is a string”
◦ This is a character: ‘R’

◦ So is this: ‘\n’

◦ ‘This is an error’
◦ ‘a’ and “a” are fundamentally different in Java

 Can use charAt(index)

 Example:

String message = "Rose-Hulman";

for (int i=0; i < message.length(); i++) {

 System.out.println(message.charAt(i));

}

 charAt() returns a 16-bit char value*

 Exercise: Work on TODO items in
StringsAndChars.java

* Unfortunately there are more than 216 (65536) symbols
in the known written languages. See Character API

docs for the sordid details.

 Creating a Scanner object:
◦ Scanner inputScanner =
 new Scanner(System.in);

 Defines methods to read from keyboard:
◦ inputScanner.nextInt()

◦ inputScanner.nextDouble()

◦ inputScanner.nextLine()

◦ inputScanner.next()

 Exercise: Look at ScannerExample.java
◦ Add println’s to the code to prompt the user for

the values to be entered

Tables from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

More options than in C.
I used a couple in
today’s examples.
Can you find them?

Q1 – Q2

 Printing:
◦ System.out.printf(“%5.2f%n”, Math.PI);

 Formatting strings:
◦ String message =
 String.format(“%5.2f%n”, Math.PI);

 Display dialog box messages
◦ JOptionPane.showMessageDialog(null, message);

int letterCount = 0;
int upperCaseCount = 0;
String switchedCase = "";

for (int i = 0; i < message.length(); i++) {
 char nextChar = message.charAt(i);

 if (Character.isLetter(nextChar)) {
 letterCount++;
 }

 if (Character.isUpperCase(nextChar)) {
 upperCaseCount++;
 switchedCase += Character.toLowerCase(nextChar);
 } else if (Character.isLowerCase(nextChar)){
 switchedCase += Character.toUpperCase(nextChar);
 } else {
 switchedCase += nextChar;
 }
}

 Exercise: EmailValidator
◦ Use a Scanner object

◦ Prompt for user’s email address

◦ Prompt for it again

◦ Compare the two entries and report whether or not
they match

 Notice anything strange?

 In Java:
◦ o1 == o2 compares values

 It evaluates to true only if their bits are the same

 So for variables of class type, which store references, they are ==
only if they refer to the same object (same place in memory)

◦ There is an equals method defined in the Object class,
that all objects inherit.

 It behaves the same as == does.

 But subclasses can, and often do, override the equals method
to give their own semantics to “equality”, using their internal
state (their fields). For example:

 For Strings: s1.equals(s2) iff their characters are all ==.

 new Integer(“0”).equals(new Integer(“-0”))

Q3 – Q4
How should you compare the email

addresses in the exercise?

The equals method is
intended to dig inside

objects and compare their
data in a “sensible” way.

 Statements: used only for their side effects
◦ Changes they make to stored values or control flow

◦ Printed output

◦ Drawig

 Expressions: calculate values

 Many statements contain expressions:

◦ if (amount <= balance) {
 balance -= amount;
} else {
 balance -= OVERDRAFT_FEE;
}

 Let us choose between two possible values for
an expression

 For example,
◦ balance -= (amount <= balance ? amount : OVERDRAFT_FEE);

 is equivalent to:
 if (amount <= balance) {
 balance -= amount;
} else {
 balance -= OVERDRAFT_FEE;
}

 Also called ternary or selection operator (Why?)

Q5

 Comparison operators: <, <=, >, >=, !=, ==

 Comparing objects: equals(), compareTo()

 Boolean operators:

◦ and: &&

◦ or: ||

◦ not: !

Q6

 A common pattern in Java:
public boolean isFoo() {
 … // return true or false depending on
 // the Foo-ness of this object
}

Q7

 Black box testing: testing without regard to
internal structure of program
◦ For example, user testing

 White box testing: writing tests based on
knowledge of how code is implemented
◦ For example, unit testing

 Test coverage: the percentage of the source
code executed by all the tests taken together
◦ Want high test coverage

◦ Low test coverage can happen when we miss
branches of switch or if statements

Q8

The next five slides on switch
and enumerations are
optional. Do the Bid exercise
if you’re interested. See the
book or Google for more info.
on switch and enum.

char grade = …
int points;
switch (grade) {
case ‘A’:
 points = 95;
 break;
case ‘B’:
 points = 85;
 break;
…
default:
 points = 0;
}

Can switch on
integer, character,

or “enumerated
constant”

Don’t forget the
breaks!

 Specify named sets:
public enum Suit {
 CLUBS, SPADES, DIAMONDS, HEARTS
}

 Store values from set:
Card c = new Card(2, CLUBS);’

 Then switch on them:
switch (this.suit) {
 case CLUBS:
 case SPADES:
 return “black”;
 default:
 return “red”;
}

Why no break
here?

Why no break
here?

 Implement a class Bid
◦ Constructor should take a “trump” Suit and an

integer representing a number of “tricks”

◦ Test and implement a method, getValue(), that
returns the point value of the bid, or 0 if the bid
isn’t legal. See table for values of the legal bids.

Spades Clubs Diamonds Hearts No Trump

6 tricks 40 60 80 100 120

7 tricks 140 160 180 200 220

8 tricks 240 260 280 300 320

9 tricks 340 360 380 400 420

10 tricks 440 460 480 500 520

switch (bidSuit) {
 case CLUBS:
 case SPADES:
 return “black”;
 default:
 return “red”;
}

Suit enum is provided in the repository!

http://en.wikipedia.org/wiki/500_(card_game)
http://en.wikipedia.org/wiki/500_(card_game)

 Live-coding:
◦ Test and implement isValid() method for Bid

 JUnit has test methods assertTrue() and
assertFalse() that will be handy

◦ Change getValue(): return 0 if isValid() is false

 Study your code for Bid and BidTests

 Do you have 100% test coverage of the
methods?

◦ getValue()

◦ isValid()

 Add tests until you have 100% test coverage

Hand in quiz.

Work on Homework 6:

 Grade and CubicPlot

These are challenging
exercises!
If you do not make a lot of progress during
today’s class, be sure to work on it some
more today! People who put this one off
until Wednesday evening may be in trouble!

Q9 – Q10

