
Inheritance 

Check out Inheritance from SVN 





 Sometimes a new class is a 
special case of the concept 
represented by another  

 

 Can “borrow” from an 
existing class, changing just 
what we need 

 

 The new class inherits from 
the existing one: 
◦ all methods 

◦ all instance fields 
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 class SavingsAccount extends BankAccount 

◦ adds interest earning, keeps other traits 

 

 class Employee extends Person 

◦ adds pay info. and methods, keeps other traits 

 

 class Manager extends Employee 

◦ adds info. about employees managed, changes pay 
mechanism, keeps other traits 



 class SavingsAccount extends BankAccount { 

 // added fields 

 // added methods 

} 

 

 Say “SavingsAccount is a BankAccount” 

 

 Superclass: BankAccount 

 

 Subclass: SavingsAccount 
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The “superest” 
class in Java 

Still means 
“is a” 

Solid line 
shows 

inheritance 
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 class ClickHandler implements MouseListener 

 

◦ ClickHandler promises to implement all the 
methods of MouseListener 

 

 
 class CheckingAccount extends BankAccount 

 

◦ CheckingAccount inherits (or overrides) all the 
methods of BankAccount 

For client code 
reuse 

For 
implementation 

code reuse 





 Inherit methods unchanged 

 

 

 Override methods 
◦ Declare a new method with same signature to use 

instead of superclass method 

 

 

 Add entirely new methods not in superclass 
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 ALWAYS inherit all fields unchanged 

 

 
 

 Can add entirely new fields not in superclass 

DANGER!  Don’t use 
the same name as a 

superclass field! 
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 Calling superclass method: 
◦ super.methodName(args); 

 

 

 Calling superclass constructor: 
◦ super(args); 

Must be the first 
line of the subclass 

constructor 
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 A subclass instance is a superclass instance 
◦ Polymorphism still works! 

◦ BankAccount ba = new SavingsAccount(); 
ba.deposit(100); 

 

 But not the other way around! 
◦ SavingsAccount sa = new BankAccount(); 
sa.addInterest(); 

 

 Why not? 
BOOM! 

For client code reuse 
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 Can use: 
◦ public void transfer(double amt, BankAccount o){ 
    withdraw(amount); 

    o.deposit(amount); 

} 

in BankAccount 

 To transfer between different accounts: 
◦ SavingsAccount sa = …; 

◦ CheckingAccount ca = …; 

◦ sa.transfer(100, ca); 



 Hybrid of superclasses and interfaces 
◦ Like regular superclass: 

 Provide implementation of some methods 

◦ Like interfaces 

 Just provide signatures and docs of other methods 

 Can’t be instantiated 

 Example: 
◦ public abstract class BankAccount { 
    /** documentation here */ 

    public abstract void deductFees(); 

    … 

} 

Elided methods as before 



 Review 
◦ public—any code can see it 

◦ private—only the class itself can see it 

 

 Others 
◦ default (i.e., no modifier)—only code  

in the same package can see it 

 good choice for classes 

◦ protected—like default, but  
subclasses also have access 

 sometimes useful for helper methods 

Bad 
for 

fields! 
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Linear Lights Out 
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Demo 
UML Design Questions 


