
Inheritance

Check out Inheritance from SVN

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods

◦ all instance fields

Q1

 class SavingsAccount extends BankAccount

◦ adds interest earning, keeps other traits

 class Employee extends Person

◦ adds pay info. and methods, keeps other traits

 class Manager extends Employee

◦ adds info. about employees managed, changes pay
mechanism, keeps other traits

 class SavingsAccount extends BankAccount {

 // added fields

 // added methods

}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

Q2

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

Q3

 class ClickHandler implements MouseListener

◦ ClickHandler promises to implement all the
methods of MouseListener

 class CheckingAccount extends BankAccount

◦ CheckingAccount inherits (or overrides) all the
methods of BankAccount

For client code
reuse

For
implementation

code reuse

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Add entirely new methods not in superclass

Q4

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

Q5

 Calling superclass method:
◦ super.methodName(args);

 Calling superclass constructor:
◦ super(args);

Must be the first
line of the subclass

constructor

Q6

 A subclass instance is a superclass instance
◦ Polymorphism still works!

◦ BankAccount ba = new SavingsAccount();
ba.deposit(100);

 But not the other way around!
◦ SavingsAccount sa = new BankAccount();
sa.addInterest();

 Why not?
BOOM!

For client code reuse

Q7

 Can use:
◦ public void transfer(double amt, BankAccount o){
 withdraw(amount);

 o.deposit(amount);

}

in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;

◦ CheckingAccount ca = …;

◦ sa.transfer(100, ca);

 Hybrid of superclasses and interfaces
◦ Like regular superclass:

 Provide implementation of some methods

◦ Like interfaces

 Just provide signatures and docs of other methods

 Can’t be instantiated

 Example:
◦ public abstract class BankAccount {
 /** documentation here */

 public abstract void deductFees();

 …

}

Elided methods as before

 Review
◦ public—any code can see it

◦ private—only the class itself can see it

 Others
◦ default (i.e., no modifier)—only code

in the same package can see it

 good choice for classes

◦ protected—like default, but
subclasses also have access

 sometimes useful for helper methods

Bad
for

fields!

Q8

Linear Lights Out

Q9-Q10

Demo
UML Design Questions

