
Designing Classes

Check out DesigningClasses project from SVN

It starts with good classes…

 Come from nouns in the problem description

 May…
◦ Represent single concepts

 Circle, Investment

◦ Represent visual elements of the project

 FacesComponent, UpdateButton

◦ Be abstractions of real-life entities

 BankAccount, TicTacToeBoard

◦ Be actors

 Scanner, CircleViewer

◦ Be utilities

 Math

Q1

 Can’t tell what it does from its name

◦ PayCheckProgram

 Turning a single action into a class

◦ ComputePaycheck

 Name isn’t a noun
◦ Interpolate, Spend

Q2

 Cohesion

 Coupling

 A class should represent a single concept

 Public methods and constants should be
cohesive

 Which is more cohesive?

CashRegister

double NICKEL_VALUE
double DIME_VALUE

double QUARTER_VALUE

void add(int nickels, int
dimes, int quarters)

…

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()

Q3

 When one class requires another class to do
its job, the first class depends on the second

 Shown on UML
diagrams as:
◦ dashed line

◦ with open arrowhead

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()

Q4-Q6

 Lots of dependencies == high coupling

 Few dependencies == low coupling

 Which is better? Why?

Q7

 High cohesion

 Low coupling

 Accessor method: accesses information
without changing any

 Mutator method: modifies the object on
which it is invoked

Q8

 Accessor methods are very predictable
◦ Easy to reason about!

 Immutable classes:
◦ Have only accessor methods

◦ No mutators

 Examples: String, Double

 Is Rectangle immutable?

 Easier to reason about, less to go wrong

 Can pass around instances “fearlessly”

Q9

 Side effect: any modification of data

 Method side effect: any modification of data
visible outside the method
◦ Mutator methods: side effect on implicit parameter

◦ Can also have side effects on other parameters:

 public void transfer(double amt, Account other)

{

this.balance -= amt;

other.balance += amt;

}

Avoid this if you can!
Q10

 High cohesion

 Low coupling

 Class names are nouns

◦ Method names are verbs

 Immutable where practical

◦ Document where not

 Inheritance for code reuse

 Interfaces to allow others to interact with your
code

Coming attractions

See HW16 –Chess exercise

Work in groups of three or
four on the whiteboards

Static fields and methods …

 static members (fields and methods)…
◦ are not part of objects

◦ are part of the class itself

 Mnemonic: objects can be passed around, but
static members stay put

 Cannot refer to this
◦ They aren’t in an object, so there is no this!

 Are called without an implicit parameter

◦ Math.sqrt(2.0)

◦ Inside a class, the class name is optional but much clearer to
use (just like this for instance fields and methods)

Class name, not object
reference

 The main() method is static
◦ Why is it static?

◦ What objects exist when the program starts?

 Helper methods that don’t refer to this
◦ Example: creating list of Coordinates for glider

 Utility methods like sin and cos that are not
associated with any object

◦ Another example:
public class Geometry3D {

public static double sphereVolume(double radius) {

...

}

}

Q11

 We’ve seen static final fields

 Can also have static fields that aren’t final
◦ Should be private

◦ Used for information shared between instances of a
class

 Example: the number of times a particular method of
the a class is called by ANY object of that class

Q12

 private static int nextAccountNumber = 100;

 or use “static initializer” blocks:

public class Hogwarts {

private static ArrayList<String> FOUNDERS;

// …

}

static {

FOUNDERS = new ArrayList<String>();

FOUNDERS.add("Godric Gryfindor");

// ...

}

Homework 16: Polygon

 Run the program in the polygon package

 Read all the TODO’s in the Polygon class

 Do and test the TODO’s for most number of
sides, asking questions as needed

 Do and test the TODO’s for least number of
sides

• You might find Integer.MAX_VALUE helpful

Q13-Q14

