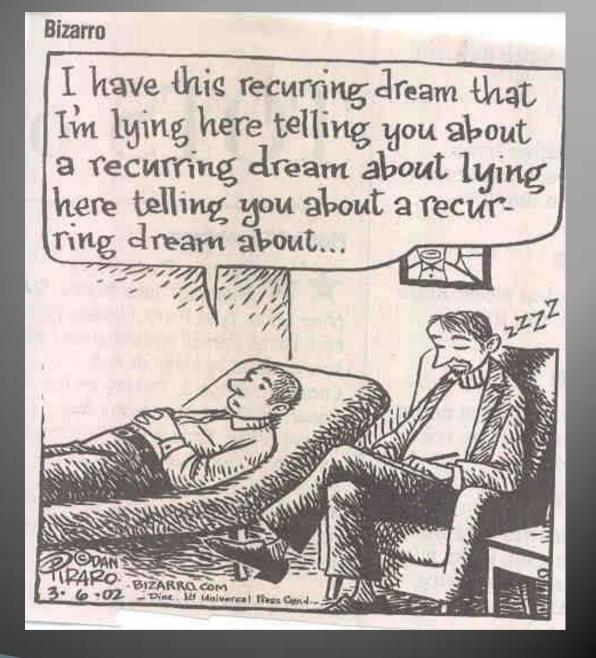


CSSE 220 Day 13

Sierpiński, Recursion and Efficiency, Mutual Recursion

Questions?



What are recursive methods?

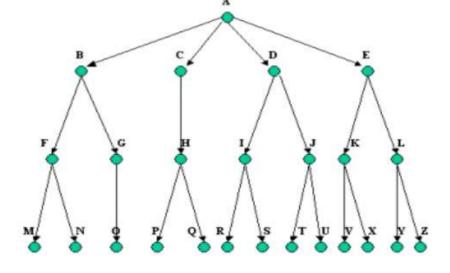
- Any method that calls itself
 - On a simpler problem
 - So that it makes progress toward completion

When should recursive methods be used?

When implementing a recursive definition

When implementing methods on recursive

data structures



Where parts of the whole look like smaller versions of the whole

The pros and cons of recursive methods

The pros

- easy to implement,
- easy to understand code,
- easy to prove code correct

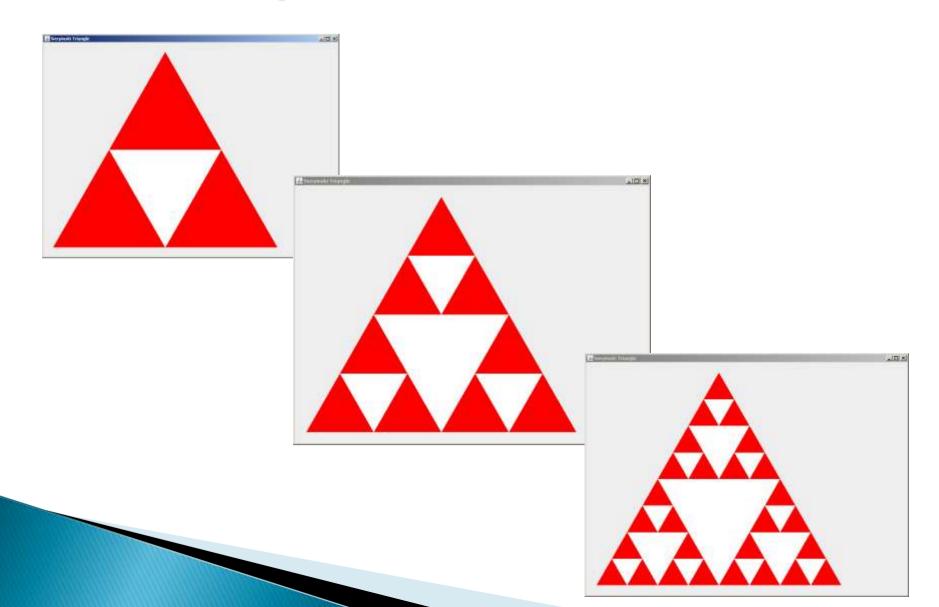
The cons

- takes more space and time than equivalent iteration
- Why?
 - because of function calls

Recap: Key Rules to Using Recursion

- Always have a base case that doesn't recurse
- Make sure recursive case always makes progress, by solving a smaller problem
- You gotta believe
 - Trust in the recursive solution
 - Just consider one step at a time

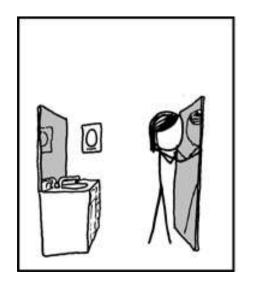
HW: Sierpinski



Work Time

>>> HW 12 & 13: Sierpinski Triangle

Two Mirrors



If you actually do this, what really happens is Douglas Hofstadter appears and talks to you for eight hours about strange loops.

What the Fib?

Why does recursive Fibonacci take so long?!?

Can we fix it?

Memoization

- Save every solution we find to sub-problems
- Before recursively computing a solution:
 - Look it up
 - If found, use it
 - Otherwise do the recursive computation

Classic Time-Space Trade Off

- A deep discovery of computer science
- In a wide variety of problems we can tune the solution by varying the amount of storage space used and the amount of computation performed
- Studied by "Complexity Theorists"
- Used everyday by software engineers

Mutual Recursion

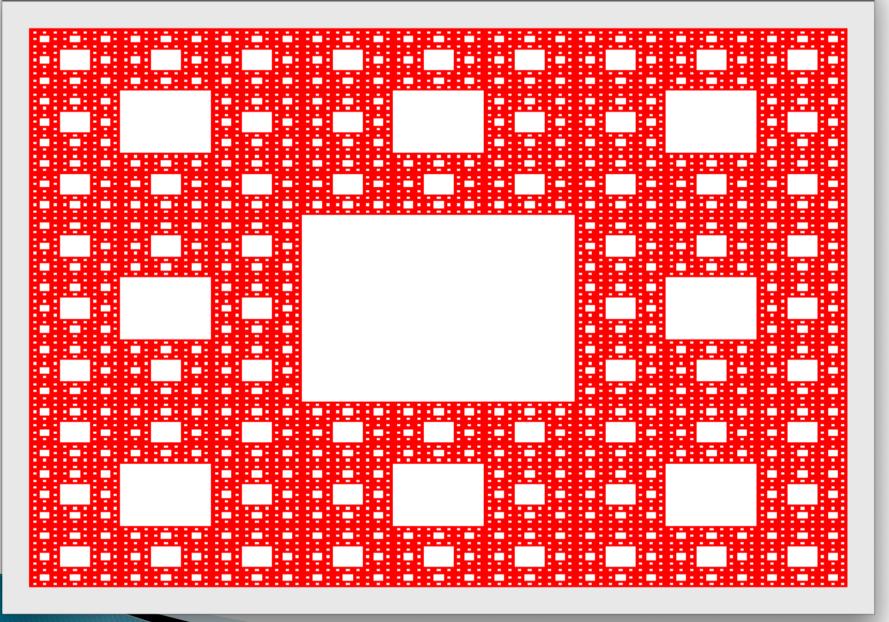
- 2 or more methods call each other repeatedly
 - E.g., Hofstadter Female and Male Sequences

$$F(n) = \begin{cases} 1 & \text{if } n = 0\\ n - M(F(n-1)) & \text{if } n > 0 \end{cases}$$

$$M(n) = \begin{cases} 0 & \text{if } n = 0\\ 0 & \text{if } n = 0 \end{cases}$$

$$M(n) = \begin{cases} 0 & \text{if } n = 0 \\ n - F(M(n-1)) & \text{if } n > 0 \end{cases}$$

 How often are the sequences different in the first 50 positions? first 500? first 5,000? first 5,000,000?



Work Time

>>> HW 13: Sierpinski Carpet