
More Java Graphics

Shape Classes: Face

Fundamental Data Types, Constants

Check out BiggestFan from SVN

 Quiz questions 1-3 review choosing fields for
a class

 Sample program using:
◦ translate

◦ rotate

 Design of the Faces project

 Work time:
◦ Review of fundamental data types

◦ Faces

 Work on Q1-3 alone or in small groups

Q1-Q3

Using Graphics2D’s rotate and
translate methods.

Design and implement a Face
class that draws a face of a
given size at a given location

 Review of fundamental data types:
◦ Work through the slides, quiz, and exercises

at your own pace

◦ Please ask questions as needed!

◦ Start the Faces HW when you are done

Check out FundamentalDataTypes from SVN

 Basic Types and Casts

 Big Integers

 Constants

 Strings and Conversions

 Understanding Error Messages

 String Input and Output (next class)

Table from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

 Consider:

 int i, j;

 double d, e;

 i = 10;

 d = 20.1;

 e = i; // OK

 j = d; // ERROR!

 Why the difference?

◦ Assigning a double to an int can result in information
loss (the fractional part)

 Add a cast to tell Java that we understand there could
be a problem here:

 j = (int) d; // OK

 But what happens to the fractional part of d?

◦ It is truncated (lost) Q4-Q5

 Look at RoundAndRound.java
◦ What does it do?

 Run it and try some different numbers, like:
◦ 1.004

◦ 1.005

◦ 1.006

◦ -1.006

◦ 4.35

 Zoinks! What’s up with these, especially the
last one?
◦ Try changing the %f format specifier to %24.20f

Q6

 BigInteger for arbitrary size integer data

 BigDecimal for arbitrary precision floating
point data

 We plan to revisit BigInteger later in the
course

 Constants let us avoid Magic Numbers
◦ Hardcoded values within more complex expressions

 Why bother?

 Code becomes more readable, easier to change,
and less error-prone!

 Example:
final double relativeEyeOutset = 0.2;

final double relativeEyeSize = 0.28;

final double faceRadius = this.diameter / 2.0;

final double faceCenterX = this.x + faceRadius;

final double eyeDiameter = relativeEyeSize * this.diameter;

…
final tells Java to stop us from
changing a value (and also gives a
“hint” to the compiler that lets it
generate more efficient code)

Q7 – Q8

 We’ve also seen constant fields in classes:

◦ public static final int FRAME_WIDTH = 800;

 Why put constants in the class instead of a
method?
1. So they can be used by other classes

2. So they can be used by multiple methods

3. So they are easier to find and change

Q9

 Already looked at some String methods

 Can also use + for string concatenation

 Quiz question:
◦ Look at StringFoo.java

◦ Based on the four uses of + in main(), can you figure
out how Java decides whether to do string
concatenation or numeric addition?

◦ Decide what the 3 commented-out uses of + in
main() will print, then uncomment them and see if
you were right.

 Do you see why they work as they do?

Q10

 You can convert strings to numbers:

◦ double Double.parseDouble(String n)

◦ int Integer.parseInt (String n)

 Can also convert numbers to strings:

◦ String Double.toString(double d)

◦ String Integer.toString(int i)

 Or maybe easier:

◦ “” + d

◦ “” + i

 Go back to StringFoo.java

 Uncomment the last line of main():
◦ StringFoo.helper();

 Run it

 What happened?

The first line will usually give you
a hint about what went wrong.

The first line of your
code listed will give
you a clue where to

look.
The error output often appears at the top of the

Console window (even though the error

occurred after the output that is displayed). This

is because the normal output and the error

output are written concurrently to two different

places, but Eclipse shows them together. Q11 – Q13

Faces HW Work Time

Check out Faces from SVN if you haven’t already.

