CSSE 220 Paint Programming assignment 
This is a pair assignment. (If there are an odd number of students in your section, there will be one team of three.) My intention is not that you “divide and conquer” as much as that you have someone to talk with as you write and test this program. If you have not already done so, read this short article on Pair Programming and discuss it with your partner: http://en.wikipedia.org/wiki/Pair_programming . In particular, note what it says about who should be the driver if you are a “mismatched pair”.
Everything that you submit for this project should be understood by both partners. It is your responsibility to (a) not submit anything without first discussing it with your partner, and (b) not let something your partner writes go “over your head” without making a strong effort to understand it, including having your partner explain it to you, of course. 

Team Grading note: Usually both partners will receive the same score for this program. But if there is ample evidence that one person did not fully participate in the learning and the doing, I reserve the right to give different grades. A peer evaluation survey at the end of the project will help me to determine this. If the survey or my observations indicate the need, I may ask you to explain parts of your project to me. 

Game description pointer: You will write a programmed that is patterned after the familiar Paint utility that has been available with the Windows operating system for many years. You can read the Help that is provided with this program to get an idea of how it should work. You do not need to have a help menu in your program. 

Repository name: http://svn.cs.rose-hulman.edu/repos/csse220-200830-paintX, where X is your 3-digit team number shown. You should check out the project from this repository, and all subsequent work should be placed in this project folder and committed back to your repository.
Teams:

	101
	Bryce Borchers
	Casimir Ksiazek

	102
	Pete Brousalis
	Ricky Chelminski

	103
	Hannah Chadd
	Annmarie Stanley

	104
	Kyle Harris
	L. Preston Sego III

	105
	Dillon Hunt
	Joe Wanstrath

	106
	Jared Mathis
	Benjamin Waters

	107
	Eric Schulte
	Jacob Wise

	108
	Ian Roberts
	Bryan Warner

	109
	Richard Stover
	Mark Swanson

	110
	Jinwoo Baek
	Michael Crane

	111
	Colin DeClue
	Matt Drosos

	112
	Bryan Cobb
	Jon Klein

	113
	Brad Holland
	Jenny Kotsybar

	114
	Joel Carlson
	Ty Strayer


Milestones: 
	Friday, March 27(end of class) 
	UML class diagram
Iterative enhancement plan.

	Tuesday, April 8 (end of class)
	Progress report 1. What in your plan has been written/tested?

	Thursday, April 10 (end of class) 
	Progress report 2. 

	Tuesday, April 15 (8:05 AM) 
	Final working code, revised UML class diagram and latest IEP.

	Thursday April 17 (8:05 AM) 
	Evaluation of yours and your partner's work on this project. 


Details:
1. UML Class Diagram (using Violet): First you should figure out what classes you need and how they will interact. (Sketching the expected layout of your screen will help you think of some of the GUI classes you’ll need, but you’ll have to figure out where you should store non-visual data as well.) Put these ideas in a UML class diagram that you save in your project folder and commit to your repository by the end of the Day 11 class period. Update your diagram whenever your design changes. 

How to commit your diagram: First, make sure you check out your Paint project in Eclipse. In Violet, use Save As to save the file to your Eclipse Workspace > Paint > Planning folder. In the Eclipse program, right-click the project folder in the Package Explorer view, and choose Refresh. Your Violet file should appear. Now right-click the project folder again, and choose Team(Commit. Select the file(s) to be committed.
2. Iterative Enhancement Plan
Software engineers typically implement their projects by using “iterative enhancement”, which means: 

· They implement the project in stages. 

· Each stage adds more functionality. 

· Each stage must be testable by running the application. 
· The final stage implements all the required functionality. 

· They test each stage as they implement it, rather than doing all the testing at the end. 

An Iterative Enhancement Plan (IEP) is a list (in ordinary English) of the stages. 

· Each stage's description explains what functionality must be supplied at that stage. 
· The description must refer only to the project's functionality, not the project's code. (e.g. "The pull-down menus appear, without functionality" is correct; "Write the menu classes" is not correct) 

· The description should make it clear what test(s) one would run in order to test that stage.
I have provided a template in Excel and put it in your repository. Modify it and commit your changes!
Here is an example of a couple of steps from a Minesweeper project used in the past (not necessarily the first two steps they did):
[image: image1.emf]
3. Progress reports: Make sure your IEP is always up-to-date and committed to SVN, and any deviations from the original plan explained. If you include your explanations in the spreadsheet, you need not submit a separate document.

The rest: 
Begin implementing, commenting, and testing your code. Create JUnit tests for any parts of the program that can be tested without the GUI, if any. Commit your project often. 

Priorities and Grades:
You should include as much functionality as you can in the time allowed. If you can't get it all done, here are some things that I consider most important:

1. Freehand brush and pencil tools.

2. Ability to draw rectangles, polygons, lines, and ovals/circles
3. Ability to select colors and styles (like width)
Some other things that are less important, but would be cool to implement, are (in no particular order)

1. Paint bucket (fill), including filling areas drawn with the freeform tool. 

2. Using the shift key to constrain rectangles to be squares and ovals to be circles.
3. Ability to erase areas of the board
4. Ability to move areas of the board

5. Spray paint

6. An undo feature (note this may conflict with the ability to erase areas, but would instead give the ability to move and erase objects, which may be more interesting). Unfortunately, it may make freeform filling more complicated.
7. File Menu (Open/Save/New)

8. Features from the Image menu

An "A" project should do some of the things on this "less important" list - perhaps most of them. I'll have to see how things go; I have never assigned this project before. You may also add other features as you see fit; non-trivial enhancements will add more points to your grade than easy ones.

For now, I can say that a team that delivers all of the milestones well-done and on time, and produces a project that correctly implements the four most important features listed above will earn at least 75% for their Paint score.
Hint: Please make sure that your canvas stays drawn if you resize it. The easiest way to do this is to put all your drawing into your Canvas’ paintComponent() method. 

