
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Check out Inheritance2 from SVN

A quick recap of last session

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods

◦ all instance fields

 class SavingsAccount extends BankAccount {

// added fields

// added methods

}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Add entirely new methods not in superclass

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

 Calling superclass method:

◦ super.methodName(args);

 Calling superclass constructor:

◦ super(args);

Must be the first
line of the subclass

constructor

 public—any code can see it

 private—only the class itself can see it

 default (i.e., no modifier)—only code in the
same package can see it

 protected—like default, but subclasses also
have access

The superest class in Java

 Every class in Java inherits from Object

◦ Directly and explicitly:

 public class String extends Object {…}

◦ Directly and implicitly:

 class BankAccount {…}

◦ Indirectly:

 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Sometimes useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation

◦ For printing

◦ In the debugger

 getClass().getName() comes in handy
here…

Q3

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use instanceof

◦ Must compare state—use cast

 Example…

Q4

Review and Practice

 A subclass instance is a superclass instance
◦ Polymorphism still works!

◦ BankAccount ba = new SavingsAccount();

ba.deposit(100);

 But not the other way around!

◦ SavingsAccount sa = new BankAccount();

sa.addInterest();

 Why not?
BOOM!

 Can use:
◦ public void transfer(double amt, BankAccount o){

withdraw(amount);

o.deposit(amount);

}

in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;

◦ CheckingAccount ca = …;

◦ sa.transfer(100, ca);

 If B extends or implements A, we can write

A x = new B();

Declared type tells which

methods x can access.

Compile-time error if try to

use method not in A.

The actual type tells which

class’ version of the

method to use.

 Can cast to recover methods from B:

((B)x).foo()

Now we can access all of

B’s methods too.

If x isn’t an instance of B,

it gives a run-time error

(class cast exception)

Q5-7, pass in when done & start reading BallWorlds spec

Meet your partner, then we’ll
code Pulsar together

n Team

01 priceha,savrdada

02 agnerrl,brooksma

03 mayhewrb,pohltm

04 maglioms,bristokb

05 goodca,schuenjr

06 mouldema,modenejm

07 bippuskw,tugayac,harrisse

08 westeras,veatchje

09 wagnerrj,ryanam

10 kleinnj,petitjam

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201120-ballworlds-teamXX

n Team

11 dohertjp,czaplikg

12 zellneaj,trederdj

13

14

15

16

17

Check out BallWorlds from SVN

n Team

21 handokkr,drakecb

22 hippstn,chenaurj

23 kaiserkp,carrila,redelmrw

24 oelschmm,meyerrd

25 deperarc,grovema

26 coblebj,lockeat

27 galvezdm,scolarrf

28 crouchjt,whiteaj

29 abdelroh,schepedw

30 jacobyam,zhangr1

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201120-ballworlds-teamXX

n Team

31 trammjn,moyessa

32 raonn,sheltotj

33 mccammjr,chappljd

34

35

36

37

Check out BallWorlds from SVN

Pulsar
Complete team pref. survey
before Wednesday 8 a.m.

Continue with Mover, etc.

Because this is a challenging assignment, we’ll let you
turn BallWorlds in before Friday at 5 p.m. for full
credit. If you miss that deadline, you may turn it in by
Sunday at 5 p.m. for 80% credit.

