
 Please sit:

◦ Sit on the left side or as close to the front on the
right side of the room as you can.

 We are excited that you are here:
◦ Start your computer and get ready for our first class

session.

CSSE 220—Object-Oriented Software

Development

Rose-Hulman Institute of Technology

 Roll Call

 A few administrative details

 Verify Eclipse and Subclipse configuration

 Java vs. Python and C

 A first Java program (calculate factorials)

 I expect you to answer every question.

 Stop me if I don’t cover a question!

Q1,Q2

 Tell me what you prefer to be called

 For introductions give:

◦ Name

◦ Major

◦ Hometown

◦ Past programming experience

Q3

 ANGEL

 Syllabus

 Schedule

Q4–Q9

 And neither is this course

 Ask, evaluate, respond, comment!

 Is it better to ask a question and risk

revealing your ignorance, or to remain

silent and perpetuate your ignorance?

 Even with statements like, “I have no idea

what you were just talking about.”

 We want to be polite, but in this room

learning trumps politeness.

 I do not intend for classroom discussions to

go over your head. Don't let them!

 Classes and objects

 Lists (but no special language syntax for

them like Python)

 Standard ways of doing graphics, GUIs.

 A huge library of classes/functions that make

many tasks easier.

 A nicer Eclipse interface than C has.

 Many similar primitive types:

int, char, long, float, double, ….

 Static typing:

Types of all variables must be declared.

 Similar syntax and semantics for if, for, while,

break, continue, function definitions.

 Semicolons required mostly in the same places.

 Execution begins with the main() function.

 Comments: // and /* … */

 Arrays are homogeneous, and size must be

declared at creation.

 Widely used in industry for large projects

◦ From cell phones

 including smart phones—Android platform

◦ To global medical records

 Object-oriented (unlike C)

 “Statically type safe” (unlike Python, C, C++)

 Less complex than C++

 Part of a strong foundation

 Most popular language according to the

TIOBE Programming Community Index

Q10

 Hopefully you already have

◦ Java

◦ Eclipse 3.5 (make sure you have this version!)

◦ Subclipse

◦ If not, see Homework 1, part 4 now

 Then go to Homework 1 and do: step 4,

then step 5a-c. This will:

◦ Configure Eclipse to use Java Preferences we have chosen

◦ Create a Workspace for your Java projects

◦ Set up your SVN repository in Eclipse

◦ Check out today’s SVN HW1 project

 Try to figure out how to run HelloPrinter.java

 Get help if you’re stuck!

 Go to SVN Repository view, at bottom of the
workbench
◦ If it is not there,

Window  Show View  Other  SVN
 SVN Repositories

 Browse SVN Repository view for HW1 project

 Right-click it, and choose Checkout
◦ Accept default options

 Expand the HW1 project that appears in
Package Explorer (on the left-hand-side)

14

 To run a Java program:

◦ Right-click it in the Package Explorer view

◦ Choose Run As → Java Application

 Change the program to say hello to a person

next to you

 Introduce an error in the program

◦ See if you can come up with a different error than

the person next to you

 Fix the error that the person next to you

introduced

public class HelloPrinter {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

In Java, all variable and

function definitions are

inside class definitions main is where we start

System.out is Java's standard

output stream. This is the

variable called out in the

System class.

System.out is an object from

the PrintStream class.

PrintStream has a method

called println().

Q11

public class Factorial {

public static final int MAX = 17;

public static int factorial(int n) {

int product;

product = 1;

for (int i = 2; i <= n; i++) {

product = product * i;

}

return product;

}

public static void main(String[] args) {

for (int i = 0; i <= Factorial.MAX; i++) {

System.out.print(i);

System.out.print("! = ");

System.out.println(factorial(i));

}

}

}

Define a constant, MAX

println (below) terminates

the output line after printing;

print doesn’t.

Except for public

static and the

declaration of the

loop counter

inside the for

header, everything

about this

function definition

is identical to C.

Make a new class (File ~ New ~ Class) called Factorial

(check the box to let Eclipse type main for you). Enter &

run the Factorial code. What happens when i = 14? Why?

This class is called

Factorial. It has

one field called

MAX and two

methods: factorial

and main.

Q12 - 14

/**

* Has a static method for computing n!

* (n factorial) and a main method that

* computes n! for n up to Factorial.MAX.

*

* @author Claude Anderson et al.

*/

public class Factorial {

/**

* Biggest factorial to compute.

*/

public static final int MAX = 17;

/**

* Computes n! for the given n.

*

* @param n

* @return n! for the given n.

*/

public static int factorial (int n) {

...

}

...

}

We left out something

important on the previous

slide – comments!

Java provides Javadoc

comments (they begin with

/**) for both:

• Internal documentation

for when someone reads

the code itself

• External documentation

for when someone re-uses

the code

Comment your own code now,

as indicated by this example.

Don’t forget the @author tag in

HelloPrinter.

 Write appropriate comments:

◦ Javadoc comments for public fields and methods.

◦ Explanations of anything else that is not obvious.

 Give self-documenting variable and method names:

◦ Use name completion in Eclipse, Ctrl-Space, to keep typing

cost low and readability high

 Use Ctrl-Shift-F in Eclipse to format your code.

 Take care of all auto-generated TODO’s.

◦ Then delete the TODO comment.

 Correct ALL compiler warnings. Quick Fix is your friend!

Q15 - 16

