CSSE 220 Day 27 Data Structures Practice

Checkout *DataStructures* project from SVN

Questions

Common ADTs

- Array List
- Linked List
- Stack
- Queue
- Set
- Map

Implementations for all of these are provided by the Java Collections Framework in the java.util package. We'll practice using them.

Array Lists and Linked Lists

Operations Provided	Array List Efficiency	Linked List Efficiency
Random access	O(1)	O(n)
Add/remove item	O(n)	O(1)

Finish ListIterator delete together now

Stacks

- A last-in, first-out (LIFO) data structure
- Real-world stacks
 - Plate dispensers in the cafeteria
 - Pancakes!
- Some uses:
 - Tracking paths through a maze
 - Providing "unlimited undo" in an application

Operations Provided	Efficiency	
Push item	O(1)	
Pop item	O(1)	

Implemented by Stack, LinkedList, and ArrayDeque in Java

Queues

- A first-in, first-out (FIFO) data structure
- Real-world queues
 - Waiting line at the BMV
 - Character on Star Trek TNG
- Some uses:
 - Scheduling access to shared resource (e.g., printer)

Operations Provided	Efficiency	
Enqueue item	O(1)	
Dequeue item	O(1)	

Implemented by LinkedList and ArrayDeque in Java

Sets

- Collections without duplicates
- Real-world sets
 - Students
 - Collectibles
- Some uses:
 - Quickly checking if an item is in a collection

Operations	HashSet	TreeSet	
Add/remove item	O(1)	O(lg n)	
Contains?	O(1)	O(lg __ n)	
Can hog space	Sorts	items!	Q3

Maps

- Associate unique keys with values
- Real-world "maps"
 - Dictionary
 - Phone book
- Some uses:
 - Associating student ID with transcript
 - Associating name with high scores

Operations	HashMap	TreeMap
Insert key-value pair	O(1)	O(lg n)
Look up value for key	O(1)	O(lg n)
Can hog space	Sorts items by key	/! Q4

Markov Chaining

>> Demonstration

Markov Chain Progam

Input: a text file

the skunk jumped over the stump the stump jumped over the skunk the skunk said the stump stunk and the stump said the skunk stunk

 Output: a randomly generated list of words that is "like" the original input in a well-defined way

Markov Chain Process

- Gather statistics on word patterns by building an appropriate data structure
- Use the data structure to generate random text that follows the discovered patterns

Work Time

- Review HW description
- What questions do you have?
- Use the remainder of the class to work on Vector Graphics with your team.