
Sorting Algorithms

Algorithm Analysis and Big-O

Function Objects and the Comparator Interface

Checkout SortingAndSearching project from SVN

 One s = new Two();

s.delta();

 s is actually a Two,
but declared to be a One

 Compiles?
◦ Yes, One has a delta

 When executed,
s morphs to a Two:

◦ Looks in Two for a delta,
doesn’t find one

◦ Then looks in One, finds one and
runs it (inheritance). Prints “D”.

◦ Then looks for a beta applied to
this – this is a Two, so runs
Two’s delta, printing an “E”.

class Two extends One

implements Top {

public void beta() {

System.out.println(“E”);

}

// no delta

}

class One implements Top {

public void beta() {

System.out.println(“B”);

}

public void delta() {

System.out.println(“D”);

this.beta();

}

}

A

B

C

A

B

C

A

B

C

In A:
B b = new B(…);

C c = new C(b, …);

In A:
C c = new C(…);

B b = new B(c, …);

In A:
B b = new B(…);

C c = new C(…);

b.setC(c);

c.setB(b);

In B (and likewise C):

public void setC(C c) {

this.c = c;

}

 Hint: determine the
recursive step first
◦ Top-down thinking

instead of bottom-up

 The shaded area in the
whole triangle is ____
the shaded area in what triangle(s) ?

 Answer: 3 times the shaded area in the lower-left
triangle. So the code for the recursive case is:
◦ return 3 * shadedArea(x, y, base/2);

 Note that I used a helper method (alternative: construct a
triangle with half the base), and that x and y are NOT needed

Exam results

Let’s see…

Remember
Shlemiel the Painter

 Be able to describe basic sorting algorithms:
◦ Selection sort

◦ Insertion sort

◦ Merge sort

◦ Quicksort

 Know the run-time efficiency of each

 Know the best and worst case inputs for each

 Profiling: collecting data on the run-time
behavior of an algorithm

 How long does selection sort take on:
◦ 10,000 elements?

◦ 20,000 elements?

◦ …

◦ 80,000 elements?

 O(n2)

Q1-3

 In analysis of algorithms we care about
differences between algorithms on very large
inputs

 We say, “selection sort takes on the order of
n2 steps”

 Big-Oh gives a formal definition for
“on the order of”

 Formal:
◦ We say that f(n) is O(g(n)) if and only if
◦ there exist constants c and n0 such that
◦ for every n ≥ n0 we have
◦ f(n) ≤ c × g(n)

 Informal:
◦ f(n) is roughly proportional

to g(n), for large n

 Example: 7n3 + 24n2 + 3000n + 45 is O(n3)
◦ Because it is ≤ 3,077 × n3 for all n ≥ 1

 Formal:

◦ We say that f(n) is O(g(n)) if and only if

◦ there exist constants c and n0 such that

◦ for every n ≥ n0 we have

◦ f(n) ≤ c × g(n)

 Polynomials: keep the highest
power, discard its coefficient

◦ 34n5 + 20n2 + 10000

is O(n5)

 More generally:
1. Discard all multiplicative constants

2. Pick the “dominating” additive
expression per chart to the right,
discard other additive terms

30n2 + 4n3 log n
+ 45n + 70n3 + 85

is O(n3 log n)
Q4-5

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first number in the
unsorted part

◦ Insert it into the correct
location in the sorted part,
moving larger values up to
make room

Repeat until
unsorted part is
empty

 Profile insertion sort

 Analyze the worst case

◦ Assume that the inner loop runs as many times as it can

◦ Count the number of times compareTo is executed

◦ What input causes this worst-case behavior

 Analyze the best case

◦ Assume that the inner loop runs as few times as it can

◦ Count the number of times compareTo is executed

◦ What input causes this best-case behavior

 Does the input affect selection sort?

Q6-13b

Ask for help if
you’re stuck!

Handy Fact

 For searching unsorted data, what’s the worst
case number of comparisons we would have
to make?

 A divide and conquer strategy

 Basic idea:
◦ Divide the list in half

◦ Should result be in first or second half?

◦ Recursively search that half

 What’s the best case?

 What’s the worst case?

Q14

Perhaps it’s time for a break.

 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted

◦ Otherwise:

 Divide list into two halves

 Recursively sort the two halves

 Merge the sorted halves back together

 Let’s profile it…

Q13c, 15

If list is length 0 or 1,
then it’s already sorted

 Otherwise:

◦ Divide list into two halves

◦ Recursively sort the two halves

◦ Merge the sorted halves back together

Merge n/4

items

Merge n/4

items

Merge n/4

items

Merge n/4

items

Merge n items

Merge n/2 items Merge n/2 items

Merge 2

items

Merge 2

items

Merge 2

items

Merge 2

itemsetc

etc

n items merged

n items merged

n items

merged

n items

merged

etc

Another way of creating
reusable code

 Java libraries provide efficient sorting
algorithms
◦ Arrays.sort(…) and Collections.sort(…)

 But suppose we want to sort by something
other than the “natural order” given by

compareTo()

 Function Objects to the rescue!

 Objects defined to just “wrap up” functions so
we can pass them to other (library) code

 We’ve been using these for awhile now
◦ Can you think where?

 For sorting we can create a function object
that implements Comparator

http://java.sun.com/javase/6/docs/api/java/util/Comparator.html

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

Q16

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

Q17,18

data

data

data

data

data null

Insertion, per Wikipedia

 Implementing ArrayList and LinkedList

 A tour of some data structures

 Some VectorGraphics work time

