CSSE 220 Day 25

Sorting Algorithms
Algorithm Analysis and Big-0O
Function Objects and the Comparator Interface

Checkout SortingAndSearching project from SVN

v

v

v

Tips from Test 2:
polymorphism

One s = new Two() ;
s.delta() ;

s is actually a Two,

but dec/ared to be a One
Compiles?

> Yes, One has a delta
When executed,

s morphs to a Two:

- Looks in Two for a delta,
doesn’t find one

> Then looks in One, finds one and
runs it (inheritance). Prints “D”.

- Then looks for a beta applied to
this - thisis a Two, SO runs
Two’s delta, printing an “E".

class One implements Top {

public void beta() {
System.out.println(“B”) ;

}

public void delta() {
System.out.println(“D”) ;
this.beta() ;

class Two extends One
implements Top {

public void beta() {
System.out.println(“E”) ;

}

// no delta

Tips from Test 2: implementing has-a

b.setC(c) ;
c.setB(b) ;

In A:
B b = new B(.);
C c new C(b, ..):;

In A:

new C(..);
new B(c, ..):;

W QO
O Q
Il

In A:
B b = new B(..);
C ¢ = new C(..);

this.c = ¢c;

E In B (and likewise C):
public void setC(C c) {

|}

Tips from Test 2:
Recursion

» Hint: determine the
recursive step first
> Top-down thinking
instead of bottom-up
» The shaded area in the
whole triangle is

®00 Sierpinski Triangl

AAAAAAAAAAAAAA

&&&&&&&&&&&&&&

AAAAAAAAAAAAAAAAAAAAA

the shaded area in what triangle(s)?

» Answer:

3 times the shaded area in the lower-left

triangle. So the code for the recursive case is:
- return 3 * shadedArea(x, y, base/2);

- Note that | used a helper method (alternative: construct a

with half the base), and that x and y are NOT needed

Course Goals for Sorting:
You should...

» Be able to describe basic sorting algorithms:
- Selection sort
> Insertion sort
- Merge sort
> Quicksort

» Know the run-time efficiency of each
» Know the best and worst case inputs for each

Profiling Selection Sort

» Profiling: collecting data on the run-time
behavior of an algorithm

» How long does selection sort take on:
- 10,000 elements?
- 20,000 elements?

o]

- 80,000 elements?

» O(n?)

Q1-3

Big—-Oh Notation

» In analysis of algorithms we care about
differences between algorithms on very large
Inputs

» We say, “selection sort takes on the order of
n° steps’

» Big-Oh gives a formal definition for
“on the order of”

Definition of big-Oh

» Formal:
- We say that f(n) is O(g(n)) if and only if
> there exist constants ¢ and n, such that
- for every n = n, we have
> f(n) < c X g(n)

Running Time

» Informal:
> f(n) is roughly proportional
to g(n), for large n

Hy

Input Size

» Example: 7n3 + 24n? + 3000n +-45 is O(n3)

- Because itis < 3,077 x n®foralln > 1

» Formal:

i =
|g _O h - We say that f(n) is O(g(n)) if and only if
> there exist constants ¢ and n, such that
ru Ies - for every n = n, we have
> f(n) < c X g(n)
» Polynomials: keep the highest FuncTion NAME
power, discard its coefficient
- 34n5 + 20n2 + 10000 ¢ Constant
is O(n>) log N Logarithmic
» More generally: 5
1. Discard all multiplicative constants log“N Log-squared
2. Pick the “dominating” additive .
expression per chart to the right, N Linear
discard other additive terms
NlogN Nlog N
30n? + 4n3 log n N2 Quadratic
+ 45n + 70n3 + 85 - |
Is O(n3log n) -ubic
2N Q4-5 Exponential

Insertion Sort

» Basic idea:

- Think of the list as having a sorted part (at the
beginning) and an unsorted part (the rest)

> Get the first number in the
unsorted part

> Insert it into the correct
location in the sorted part,
moving larger values up to
make room

—_

Repeat until

unsorted part is
empty

Insertion Sort Exercise, Q4-11b

» Profile insertion sort

» Analyze the worst case
- Assume that the inner loop runs as many times as it can
> Count the number of times compareTo is executed
- What input causes this worst-case behavior

» Analyze the best case
- Assume that the inner loop runs as few times as it can
> Count the number of times compareTo is executed

- What input causes this best-case behavior :
D he i P> lecti 2 Ask for help if
» Does the Input arfect selection sort: you;re stuck!

Handy Fact

n(n + 1)
2

+24+...+(n—1)+n=

Q6-13b

Searching

» For searching unsorted data, what’s the worst
case number of comparisons we would have
to make?

Binary Search of Sorted Data

» A divide and conquer strategy

» Basic idea:
- Divide the list in half
> Should result be in first or second half?
- Recursively search that half

Analyzing Binary Search
» What’s the best case?

» What’s the worst case?

Q14

CALVIN! WHAT ARE
YoU DOING T
QFFEE TABLE ! P’P

V% __J,W

1S THIS SOME SORT OF

#ﬂ?lC\(QUESTION, OR WHAT?

T

Perhaps it’s time for a break.

Merge Sort

» Basic recursive idea:
o If list is length O or 1, then it’s already sorted
> Otherwise:
- Divide list into two halves
- Recursively sort the two halves
- Merge the sorted halves back together

» Let’s profile it...

Analyzing
Merge Sort

Merge n/2 items

Merge n/4
items

N

If list is length O or 1,
then it’s already sorted

» Otherwise:
> Divide list into two halves
> Recursively sort the two halves
- Merge the sorted halves back together

Merge n items

Merge n/4
items

n items merged

Merge n/2 items

Merge n/4
items

etc

A"

etc

Merge n/4
items

A"

Merge 2
items

n items merged

n items
merged

etc

n items
merged

Ql13c, 15

A Sort of a Different Order

» Java libraries provide efficient sorting
algorithms
- Arrays.sort(..) and Collections.sort(..)

» But suppose we want to sort by something
other than the “natural order” given by

compareTo()

» Function Objects to the rescue!

Function Objects

» Objects defined to just “wrap up” functions so
we can pass them to other (library) code

» We've been using these for awhile now
- Can you think where?

» For sorting we can create a function object
that implements

http://java.sun.com/javase/6/docs/api/java/util/Comparator.html

Data Structures

» Efficient ways to store data based on how
we’ll use it

» So far we’ve seen ArraylLists
- Fast addition to end of list
- Fast access to any existing position
> Slow inserts to and deletes from middle of list

Q16

Another List Data Structure

» What if we have to add/remove data from a

list frequently?

data

» LinkedL1ists support this:

- Fast insertion and removal of elements data
- Once we know where they go
- Slow access to arbitrary elements data
data | null
newNode newNode
B B
A Ei‘ data | '
Slal Pfc| b af{a]’ c|
node node.next node
Insertion, per Wikipedia Q17,18

Next Time

» Implementing ArrayList and LinkedList
» A tour of some data structures

» Some VectorGraphics work time

