
n Team

11 lamantds,lint,audretad,fry

12 zimmerka,channmn,shumwanm,wardsr

13 lapresga,draycs,roserrm

14 geislekj,degrotpc,evansea,houstoef

15
weavergg,maderli,knightbk,baldwicd

16
kautzjr,cahilltr,hannantt,hopkinaj

17
klaassmj,vermil,ernsteac,wieganda

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201020-vg-teamXX

Sit with your team
(in two rows, so
that you can face
each other)

Check out
VectorGraphics
from SVN

Browse its Planning
folder

n Team

20
Ahmed Alshaali, Kyle Apple, Ian
Cundiff & Alex Mullans

21
Tom Atnip, Jeremy Bailey, Susan
Cisneros & George Mammarella

22
Devon Banks, Ben McDonald, Ruben
Rodriguez & Nathan Varner

23
Brian Collins, Katie Greenwald, Ann
Say & Franklin Totten

24
Ryan Fuller, Alex Gumz, Elizabeth
Hines & Richard Thai

25
Chase Mathison, Rebecca McCarthy,
Jackson Melling, & Donnie Quamme

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201020-vg-teamXX

Sit with your team (in
two rows, so that you
can face each other)

Check out
VectorGraphics from
SVN

Browse its Planning
folder

Object-Oriented Design

Begin your VectorGraphics project

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Software
Development

 Standardized approaches intended to:
◦ Reduce costs

◦ Increase predictability of results

 Examples:
◦ Waterfall model

◦ Spiral model

◦ “Rational Unified Process”

 Do each stage to completion
 Then do the next stage

Pipe dream model?

Analysis

Design

Implementation

Testing

Deployment

 Repeat phases in a cycle

 Produce a prototype at end of each cycle

 Get early feedback, incorporate changes

 Schedule overruns
 Scope creep

Deployment

Prototype

 Like the spiral model with very short cycles

 Pioneered by Kent Beck

 One of several “agile” methodologies, focused
on building high quality software quickly

 Rather than focus on rigid process, XP
espouses 12 key practices…

 Realistic planning

 Small releases

 Shared metaphors

 Simplicity

 Testing

 Refactoring

 Pair programming

 Collective ownership

 Continuous integration

 40-hour week

 On-site customer

 Coding standards

When you see
opportunity to make

code better, do it

Use descriptive names,
Control-Shift-F, etc

A team project to create a
scalable graphics program.

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov
http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov
http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov

 A team assignment

◦ So some division of labor is appropriate (indeed,
necessary)

 A learning experience, so:

◦ Rule 1: every team member must participate in
every major activity.

◦ Rule 2: Everything that you submit for this project
should be understood by all team members.

 Not necessarily all the details, but all the basic ideas

Week Cycle
Planning

due
Code due

Week
7

Cycle 0 See next slide

Cycle 1
Thursday

Week
8

Monday

Cycle 2
Tuesday

Sunday

Week
9

Cycle 3
Monday

Thursday

Cycle 4
Friday

Week
10

Tuesday

Public demo, Wednesday
lunchtime

Planning deliverables:
◦ User Stories

◦ in a Release Plan

◦ UML class diagram

◦ with details for cycle

◦ Task List

Code deliverables:
◦ Code

◦ Status report

◦ Individual evaluation of
team performance

◦ Survey on Angel

Today

1. Make the first version of your Release Plan

2. Do a draft high-level design
◦ CRC cards

◦ Convert to UML class diagram

3. Make a screen layout sketch

Before Thursday:

1. Finish above

2. Produce Planning deliverables for Cycle 1

 Open your Release Plan for Cycle 0

◦ VectorGraphics project from SVN

◦ Planning ~ Cycle 0 ~ ReleasePlan-ForCycle0.docx

◦ Be careful that only one team member modifies it

 Familiarize yourself with the Features

◦ Listed for you in the Release Plan

 Make a Release Plan

◦ For each of the 4 development cycles, what
Features you will implement in that cycle

◦ You will revise and refine your Release Plan at the
beginning of each development cycle

A practical technique

 We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

 We will practice a common object-oriented
design technique using CRC Cards which then
get turned into your UML class diagram

 Like any design technique,
the key to success is practice

1. Discover classes based on
requirements
 Come from nouns

in the problem description

2. Determine responsibilities
of each class
 Come from verbs

associated with the classes

3. Describe relationships
between classes:

is-a, has-a

May…

Represent single concepts

Circle, Investment

Represent visual elements of

the project

FacesComponent,

UpdateButton

Be abstractions of real-life

entities

BankAccount,

TicTacToeBoard

Be actors

Scanner, CircleViewer

Be utilities

Math

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes  Return to step 1

◦ No 

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’ cards

Class
name

Collaborators

Responsibilities

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

1. Pick a responsibility
of the program

2. Pick a class to carry out
that responsibility

◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes  Return to step 1

◦ No 

 Decide which classes
should help

 List them as collaborators
on the first card

 Add additional
responsibilities to the collaborators’ cards

 High cohesion

 Low coupling

 Immutable where practical

◦ Document where not

 Inheritance for code reuse

 Interfaces to allow others
to interact with your code

 Classes stay classes

 Responsibilities become properties (methods)

 If attributes (fields) are obvious, add them

 Collaborators are usually has-a relationships

 If is-a relationships are obvious, add them

 You can probably work in parallel as two pairs
◦ Or a subteam can begin work on your Screen Layout

sketches

 Exchange contact information
◦ If you want, put it into your Planning folder

 Fill in your TaskList-ForCycle0.xlsx, with:
◦ Complete the CRC Cards

 And scan them in

◦ Complete the UML class diagram based on them

 In UMLet

◦ Do a Screen Layout Sketch

 2 to 5 pages, annotated to show the user interface

 Need not be pretty

◦ Do the Cycle 1 Planning deliverables

 All the above:
◦ Is due Thursday in class

◦ Can be

 through group meetings or

 dividing up the work or

 a combination of the two

