
n Team

11 lamantds,lint,audretad,fry

12 zimmerka,channmn,shumwanm,wardsr

13 lapresga,draycs,roserrm

14 geislekj,degrotpc,evansea,houstoef

15
weavergg,maderli,knightbk,baldwicd

16
kautzjr,cahilltr,hannantt,hopkinaj

17
klaassmj,vermil,ernsteac,wieganda

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201020-vg-teamXX

Sit with your team
(in two rows, so
that you can face
each other)

Check out
VectorGraphics
from SVN

Browse its Planning
folder

n Team

20
Ahmed Alshaali, Kyle Apple, Ian
Cundiff & Alex Mullans

21
Tom Atnip, Jeremy Bailey, Susan
Cisneros & George Mammarella

22
Devon Banks, Ben McDonald, Ruben
Rodriguez & Nathan Varner

23
Brian Collins, Katie Greenwald, Ann
Say & Franklin Totten

24
Ryan Fuller, Alex Gumz, Elizabeth
Hines & Richard Thai

25
Chase Mathison, Rebecca McCarthy,
Jackson Melling, & Donnie Quamme

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201020-vg-teamXX

Sit with your team (in
two rows, so that you
can face each other)

Check out
VectorGraphics from
SVN

Browse its Planning
folder

Object-Oriented Design

Begin your VectorGraphics project

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Software
Development

 Standardized approaches intended to:
◦ Reduce costs

◦ Increase predictability of results

 Examples:
◦ Waterfall model

◦ Spiral model

◦ “Rational Unified Process”

 Do each stage to completion
 Then do the next stage

Pipe dream model?

Analysis

Design

Implementation

Testing

Deployment

 Repeat phases in a cycle

 Produce a prototype at end of each cycle

 Get early feedback, incorporate changes

 Schedule overruns
 Scope creep

Deployment

Prototype

 Like the spiral model with very short cycles

 Pioneered by Kent Beck

 One of several “agile” methodologies, focused
on building high quality software quickly

 Rather than focus on rigid process, XP
espouses 12 key practices…

 Realistic planning

 Small releases

 Shared metaphors

 Simplicity

 Testing

 Refactoring

 Pair programming

 Collective ownership

 Continuous integration

 40-hour week

 On-site customer

 Coding standards

When you see
opportunity to make

code better, do it

Use descriptive names,
Control-Shift-F, etc

A team project to create a
scalable graphics program.

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov
http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov
http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov

 A team assignment

◦ So some division of labor is appropriate (indeed,
necessary)

 A learning experience, so:

◦ Rule 1: every team member must participate in
every major activity.

◦ Rule 2: Everything that you submit for this project
should be understood by all team members.

 Not necessarily all the details, but all the basic ideas

Week Cycle
Planning

due
Code due

Week
7

Cycle 0 See next slide

Cycle 1
Thursday

Week
8

Monday

Cycle 2
Tuesday

Sunday

Week
9

Cycle 3
Monday

Thursday

Cycle 4
Friday

Week
10

Tuesday

Public demo, Wednesday
lunchtime

Planning deliverables:
◦ User Stories

◦ in a Release Plan

◦ UML class diagram

◦ with details for cycle

◦ Task List

Code deliverables:
◦ Code

◦ Status report

◦ Individual evaluation of
team performance

◦ Survey on Angel

Today

1. Make the first version of your Release Plan

2. Do a draft high-level design
◦ CRC cards

◦ Convert to UML class diagram

3. Make a screen layout sketch

Before Thursday:

1. Finish above

2. Produce Planning deliverables for Cycle 1

 Open your Release Plan for Cycle 0

◦ VectorGraphics project from SVN

◦ Planning ~ Cycle 0 ~ ReleasePlan-ForCycle0.docx

◦ Be careful that only one team member modifies it

 Familiarize yourself with the Features

◦ Listed for you in the Release Plan

 Make a Release Plan

◦ For each of the 4 development cycles, what
Features you will implement in that cycle

◦ You will revise and refine your Release Plan at the
beginning of each development cycle

A practical technique

 We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

 We will practice a common object-oriented
design technique using CRC Cards which then
get turned into your UML class diagram

 Like any design technique,
the key to success is practice

1. Discover classes based on
requirements
 Come from nouns

in the problem description

2. Determine responsibilities
of each class
 Come from verbs

associated with the classes

3. Describe relationships
between classes:

is-a, has-a

May…

Represent single concepts

Circle, Investment

Represent visual elements of

the project

FacesComponent,

UpdateButton

Be abstractions of real-life

entities

BankAccount,

TicTacToeBoard

Be actors

Scanner, CircleViewer

Be utilities

Math

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes Return to step 1

◦ No

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’ cards

Class
name

Collaborators

Responsibilities

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

1. Pick a responsibility
of the program

2. Pick a class to carry out
that responsibility

◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes Return to step 1

◦ No

 Decide which classes
should help

 List them as collaborators
on the first card

 Add additional
responsibilities to the collaborators’ cards

 High cohesion

 Low coupling

 Immutable where practical

◦ Document where not

 Inheritance for code reuse

 Interfaces to allow others
to interact with your code

 Classes stay classes

 Responsibilities become properties (methods)

 If attributes (fields) are obvious, add them

 Collaborators are usually has-a relationships

 If is-a relationships are obvious, add them

 You can probably work in parallel as two pairs
◦ Or a subteam can begin work on your Screen Layout

sketches

 Exchange contact information
◦ If you want, put it into your Planning folder

 Fill in your TaskList-ForCycle0.xlsx, with:
◦ Complete the CRC Cards

 And scan them in

◦ Complete the UML class diagram based on them

 In UMLet

◦ Do a Screen Layout Sketch

 2 to 5 pages, annotated to show the user interface

 Need not be pretty

◦ Do the Cycle 1 Planning deliverables

 All the above:
◦ Is due Thursday in class

◦ Can be

 through group meetings or

 dividing up the work or

 a combination of the two

