CSSE 220 Day 17

Inheritance

Check out /nheritance from SVN



Questions




Inheritance

» Sometimes a new class is a
special case of the concept
represented by another

» Can “borrow” from an
existing class, changing just
what we need

» The new class inherits from
the existing one:

> all methods
- all instance fields




Examples

» class SavingsAccount extends BankAccount
- adds interest earning, keeps other traits

» class Employee extends Person
- adds pay info. and methods, keeps other traits

» class Manager extends Employee

- adds info. about employees managed, changes pay
mechanism, keeps other traits

.



Notation and Terminology

» class SavingsAccount extends BankAccount {
// added fields
// added methods

}

» Say “SavingsAccount is a BankAccount’
» Superclass: BankAccount

» Subclass: SavingsAccount

Q2



Inheritance in UML

The “superest”
class in Java
Object

Still means
“is a”

BankAccount

‘ SavingsAccount I
& Q3




Interfaces vs. Inheritance

» class ClickHandler implements MouselListener

> ClickHandler promises to implement all the

methods of MouseListener\¥_ e

» class CheckingAccount extends BankAccount

> CheckingAccount inherits (or overrides) all the
methods of BankAccount
\\— For

implementation
code reuse




Inheritance Run Amok?

‘ JComponent \
‘ JPanel \ ‘JT&ﬂCumpnnent\ ‘ JLabel \ ‘Ahstractauﬂnn \

‘ JTextField \ ‘ JTextArea \ ‘ JToggleButton \ ‘ JButton \
‘ JCheckBox \ ‘ JRadioButton \




With Methods, Subclasses can:

» Inherit methods unchanged

» Override methods

- Declare a new method with same signature to use
instead of superclass method

- The new method can do completely different
behavior from the overridden method, or it can do
the overridden behavior plus some new behavior

» Add entirely new methods not in superclass

Q4



With Fields, Subclasses:

» ALWAYS inherit all fields unchanged

» Can add entirely new fields not in superclass

Z DANGER! Don’t use
the same name as a

superclass field!

Q5



Super Calls

» Calling superclass method:
- super.methodName(args) ;

» Calling superclass constructor:
o super(args);

Must be the first
line of the subclass

I constructor

Q6



BankingAccount
double balance

BankingAccount()
BankingAccount{double initialBalance)

deposit(double amount)
withdraw(double amount)

double getBalance()

transferdouble amount, BankAccount other)

L1

SavingsAccount CheckingAccount
double interestRate static final int FREE_TRANSACTIONS = 3;
SavingsAccount(double interestRate) static final double TRANSACTION FEE = 1.50;
addinterest() - runs once a month int transactionCount
CheckingAccount()

CheckingAccount{double initialBalance)

deposit(double amount)
withdraw(double amount)

deductFees()
- runs once a month
- if more than FREE_TRANSACTIONS have occurred this month,
the extra onces are charged a fee




Polymorphism and Subclasses

» A subclass instance is a superclass instance
> Polymorphism still works!
- BankAccount ba = new SavingsAccount();

ba.deposit(100); —~—~—— :
For client code reuse

» But not the other way around!
- SavingsAccount sa = new BankAccount();

sa.addInterest();\\\\\
» Why not? BOOM!
& Q7




Another Example

» Can use:

- public void transfer(double amt, BankAccount o){
withdraw(amount);
o.deposit(amount);

¥
in BankAccount

» To transfer between different accounts:

> SavingsAccount sa = ..;
- CheckingAccount ca = ..;
- sa.transfer(100, ca);:




Abstract Classes

» Hybrid of superclasses and interfaces
> Like regular superclass:
- Provide implementation of some methods
- Like interfaces
- Just provide signatures and docs of other methods
- Can’t be instantiated
» Example:
- public abstract class BankAccount {
/*%* documentation here */
public abstract void deductFees():;

Elided methods as before




Access Modifiers

» Review

> public—any code can see it
- private—only the class itself can see it

» Others N
- default (i.e., no modifier)—only code Bad for
in the same package can see it fields!
- good choice for related classes
- protected—Ilike default, but Fields
subclasses also have access should be
- sometimes useful for helper methods private

Q8



BallWorlds

- Pair programming,
- Project is in your swi

- Instructions are on cour
under Programs ~ BallWo

Your instructor will demo BallWorlds and discuss its
UML, especially the Ball interfaces




