CSSE 220 Day 15

Details on class implementation,
Interfaces and Polymorphism

Check out OnTolnterfaces from SVN

Questions

Today: A Very Full Schedule

» Scope
- Variables, fields and methods, class nhames

» Packages
» Interfaces and polymorphism

Scope - for parameters and local
variables

» Scope : the region of a program in which a
name can be accessed

o Parameter scope : the whole method body
- Local variable scope : from declaration to block end:

- public double area() {

doubleGum)= 0.0;

Point2DQrev)=
this.pts.get(this.pts.si1ze() - 1);

for (Point2D(p): this.pts) {
sum += prev.getX() * p.getY(Q;
sum -= prev.getY() * p.getX(Q;
prev = p;

} —_—
return Math.abs(sum / 2.0);
_JQIl

Scope - for fields and methods
(members of a class)

» Member scope : anywhere in the class,
including before its declaration

> This lets methods call other methods later in the
class.

» public class members can be accessed
outside the class using “qualified names”
o Math.sqrt() -
System.in

Static

e
—

o list.size () Where list is an ArrayList

pP.xX

Instance and p is a Point

Q2

Overlapping Scope and Shadowing

public class TempReading {
private double temp;

public void setTemp(double temp) {
this.temp = temp;

What does this

“temp” refer
to?

Always qualify field references
with . It prevents
accidental shadowing.

Last Bit of Static

» Static imports let us use unqualified names:

o 1import static java.lang.Math.PI;
- import static java.lang.Math.cos;
o import static java.lang.Math.sin;

Can then refer to just

PI
Ccos
sin

I » See the Polygon.drawOn() method

Packages

» Let us group related
classes

» We've been using them:

o javax.swing
o java.awt
> java. lang

» Can (and should) group
our own code into
packages
> Eclipse makes it easy...

Avoiding Package Name Clashes

» Remember the problem with Timer?
- Two Timer classes in different packages
- Was OK, because packages had different names

» Package naming convention: reverse URLs
- Examples:

- edu.roseHulman.csse.courseware.scheduling

- com.xkcd.comicSearch ZL G lated
Foups reilate

Z Specifies the classes as

company or
organization

company sees fit

Q5

Qualified Names and Imports

» Can use import to get classes from other
packages:

- import java.awt.Rectangle;

» Suppose we have our own Rectangle class
and we want to use ours and Java’s?
> Can use “fully qualified names”:

- java.awt.Rectangle rect =
new java.awt.Rectangle(10, 20, 30, 40);

- U-G-L-Y, but sometimes needed.

Package Tracking

| don’t even want this
package. Why did |
sign up for the

stinging insect of the
month club anyway?

ONUNE PACKAGE TRACKING:
CONVENIENT MAKES You

USEFUL LRAZY
#REFRESH*
[A STILL IN MEvpHS
+REFRESH J
| A STILLIN MENPHIS.
+REFRESH® |

Awl, STILL (N MEMPHIS.

/

mZ:

Interface Types: Key Idea

» Interface types are like contracts

> A class X can promise to implement an interface Y

- That is, X will implement every method specified in the
interface Y

- Consider code C that has variables declared to be
type Y
- That is, it has interface type variables
> Such code is called a Client of the interface Y

- Code C can automatically call the methods of class
X that are specified by interface Y!

- Because C “knows” (from X implementing Y) that X will
have the methods specified in Y

Example

» Suppose you are writing a sorting method.
You could write:

o public void sort(int[] array)

o public void sort(Double[] array)

o public void sort(BigInteger[] array)
° etc

» Can you think of a better approach?

» Write a s/ngle sort method
o public void sort (Comparable<T> array)
» where Comparable<T> specifies the

omparison method compareTo to use

Interface Types

» Express common operations that multiple
classes might have in common

» Make “client” code more reusable
» Provide method signatures and docs.
» Do not provide implementation or fields

» Example:
> Suppose you want to write a sort method.

> If you just sort integers, why is your code not very
reusable?

Qo6

interface, not class

Type parameter -
public interface Comparab1e<T> @l Comparable to type T

VAx: objects
* Compares this object with the specified
e “ object for order. Returns a negative integer,
PO Ee Al © Zzero, or a positive integer as this object is

are so * less than, equal to, or greater than the
* specified object.

*/ No method
int compareTo(T object);"’éﬂéﬁé= body, just a
1 semi-colon

public class BigInteger implements Comparable<BigInteger> {

Biginteger promises to implement all the

methods declared in the Comparable interface

Notation: In UML

Distinguishes
interfaces
from classes

<<interface>>
Comparable<T>

/ h

- m

BigRational -— -

Hollow, closed
triangular tip
means
Biginteger is a
Comparable

Q7

How does all this help reuse?

» Can pass an instance of a class where an
interface type is expected
- But only /f the class implements the interface

» We could pass Comparables to
BigRational’s compareTo(BigRational
other) method without changing
BigRational!

» Use interface types for field, method
parameter, and return types whenever
hossible

AR
X \\
2% B j\

Polymorphism

» Origin:
> Poly 2 many
> Morphism = shape

» Classes implementing an interface give many
differently “shaped” objects for the interface

type

» Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

Q9,10

