
Designing Classes

Check out the Static project from SVN

It starts with good classes…

 Come from nouns in the problem description

 May…
◦ Represent single concepts

 Circle, Investment

◦ Represent visual elements of the project

 FacesComponent, UpdateButton

◦ Be abstractions of real-life entities

 BankAccount, TicTacToeBoard

◦ Be actors

 Scanner, CircleViewer

◦ Be utilities

 Math

Q1

 Can’t tell what it does from its name

◦ PayCheckProgram

 Turning a single action into a class

◦ ComputePaycheck

 Name isn’t a noun
◦ Interpolate, Spend

Q2

 Cohesion

 Coupling

 A class should represent a single concept

 Public methods and constants should be
cohesive

 Which is more cohesive?

CashRegister

double NICKEL_VALUE
double DIME_VALUE

double QUARTER_VALUE

void add(int nickels, int
dimes, int quarters)

…

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q3

 When one classes requires another class to
do its job, the first class depends on the
second

 Shown on UML
diagrams as:
◦ dashed line

◦ with open arrowhead

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q4-6

 Lots of dependencies == high coupling

 Few dependencies == low coupling

 Which is better? Why?

Q7

 High cohesion

 Low coupling

 Accessor method: accesses information
without changing any

 Mutator method: modifies the object on
which it is invoked

Q8

 Accessor methods are very predictable
◦ Easy to reason about!

 Immutable classes:
◦ Have only accessor methods

◦ No mutators

 Examples: String, Double

 Is Rectangle immutable?

 Easier to reason about, less to go wrong

 Can pass around instances “fearlessly”

Q9

 Side effect: any modification of data

 Method side effect: any modification of data
visible outside the method
◦ Mutator methods: side effect on implicit parameter

◦ Can also have side effects on other parameters:

 public void transfer(double amt, Account other)

{

this.balance -= amt;

other.balance += amt;

}

Avoid this if you can! Q10

 High cohesion

 Low coupling

 Class names are nouns; Method names are verbs

 Immutable where practical

◦ Document where not

 Inheritance for code reuse

 Interfaces to allow others to interact with your
code

A practical technique

 We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

 We will practice a common object-oriented
design technique using CRC Cards

 Like any design technique,
the key to success is practice

1. Discover Classes based on
requirements

2. Determine Responsibilities of
each class

3. Describe Relationships between
classes

Q11

 Brainstorm a list of possible classes
◦ Anything that might work

◦ No squashing

 Prompts:
◦ Look for nouns

◦ Multiple objects are often created from each class
 so look for plural concepts

◦ Consider how much detail a concept requires:

 A lot? Probably a class

 Not much? Perhaps a primitive type

 Don’t expect to find them all add as needed

Tired of hearing this yet?

 Look for verbs in the requirements to identify
responsibilities of your system

 Which class handles the responsibility?

 Can use CRC Cards to discover this:

◦ Classes

◦ Responsibilities

◦ Collaborators

 Use one index card per class

Class name

CollaboratorsResponsibilities

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?

◦ Yes Return to step 1

◦ No

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’
cards

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

1. Pick a responsibility of the
program

2. Pick a class to carry out
that responsibility

◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes Return to step 1

◦ No

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’ cards

Design a program that lets two people play chess

against each other.

• Assume a single, shared computer and input via the Console.

 High cohesion

 Low coupling

 Immutable where practical

◦ Document where not

 Inheritance for code reuse

 Interfaces to allow others
to interact with your code

 Classes usually are related to their
collaborators

 Draw a UML class diagram showing how

 Common relationships:
◦ Inheritance: only when subclass is a special case

◦ Aggregation: when one class has a field that
references another class

◦ Dependency: like aggregation but transient, usually
for method parameters, “has a” temporarily

◦ Association: any other relationship, can label the
arrow, e.g., constructs

Exercise: Draw a UML class diagram based

on your CRC cards or our CRC cards

• Show just classes (not insides of each).

• For homework:

• Draw using UMLet

• Add insides for two classes

../Homework/CRCCardsForChess.pdf

Very brief demo of UMLet.
Show how to:

• Create a diagram element

• Type data for that element

 static members (fields and methods)…
◦ are not part of objects

◦ are part of the class itself

 Mnemonic: objects can be passed around, but
static members stay put

 Cannot refer to this
◦ They aren’t in an object, so there is no this!

 Are called without an implicit parameter

◦ Math.sqrt(2.0)

Class name, not object
reference

 Helper methods that don’t refer to this
◦ Example: creating list of Coordinates for glider

 Utility methods like sin and cos that are not
associated with any object
◦ Another example:
public class Geometry3D {

public static double sphereVolume(double radius) {

...

}

}

 The main() method is static
◦ Why is it static? What objects exist when the

program starts?

Q12

 We’ve seen static final fields

 Can also have static fields that aren’t final
◦ Should be private

◦ Used for information shared between instances of a
class

 Example: the number of times a foo() method of the
Blah class is called by ANY object of the Blah class

Q13

 private static int nextAccountNumber = 100;

 or use “static initializer” blocks:

public class Hogwarts {

private static ArrayList<String> FOUNDERS;

// …

}

static {

FOUNDERS = new ArrayList<String>();

FOUNDERS.add("Godric Gryfindor");

// ...

}

Q14-15

 Polygon

• Run the program

• Note that the least/most number of sides data
is shown but is -1 (not yet implemented)

• Read all the TODO’s in the Polygon class

• Do and test the TODO’s for most number of
sides, asking questions as needed

• Do and test the TODO’s for least number of
sides

• You might find Integer.MAX_VALUE helpful

Before you leave today, arrive a time with your
partner to complete the Game of Life.

