
Two-dimensional arrays,

Copying arrays (shallow copies),

Software Engineering Techniques
(regression testing, pair programming, team version control)

Check out TwoDArrays from SVN

 Test next Monday

◦ Evening exam! Schedule page says where and when.

◦ Exam is 7-9 p.m. but you may start the exam up to 1 hour early and
stay up to 1 hour late (or both)

 Topics from Chapters 1-7

 Will include:

◦ A closed-book paper part: short answer, fill-in-the-blank, trace-
code-by-hand, draw box-and-pointer diagrams, find-errors-in-
code, write short chunks of code

 We will list in advance ALL the possible topics for this portion of the exam

◦ A programming part: a few small programs, unit tests provided for
some of them, you write unit tests for others

 Review in class Thursday

◦ Bring questions

◦ I won’t prepare anything but am happy to cover whatever you want,
including working examples

Q1

See the Schedule page, Session 12,

for a link to a document that lists the

topics covered by this exam

../Schedule/Schedule.htm

public class TicTacToe {

private final int rows;

private final int columns;

private String[][] board;

/**

* Constructs a 3x3 TicTacToe board with all squares blank.

*/

public TicTacToe() {

this.rows = 3;

this.columns = 3;

this.board = new String[this.rows][this.columns];

for (int r = 0; r < this.rows; r++) {

for (int c = 0; c < this.columns; c++) {

this.board[r][c] = " ";

}

}

}

What is the value of this.board[1][2]

immediately after this statement executes?

Note the (very common) pattern: loop-through-rows,

for each row loop-through columns

Could have used:
this.board.length

Could have used:
this.board[r].length

Q2

Complete the TODO items in
TicTacToe and TicTacToeTest

They’re numbered; do ‘em in
order.

• The Tasks tab lists the TODO’s.

The stub of the non-default
constructor that we gave to you
has a compile-time error; that is
purposeful – you’ll correct that
error as part of your TODO 1.

 Assignment uses reference values:
◦ double[] data = new double[4];

for (int i = 0; i < data.length; i++) {

data[i] = i * i;

}

◦ double[] pieces = data;

◦ foo.someMethod(data);

Q3-5

pieces

public void someMethod(double[] d) {

this.dataInMethod = d;

...

}

0 91 4data

d

dataInMethodThis makes the field a

reference to (NOT a copy

of) a list that exists

elsewhere in the code.

Think carefully about

whether you want this or

a clone (copy).

 You can copy an array in any of several ways:

1. Write an explicit loop, copying the elements one by one

2. Use the clone method that all arrays have

newArray = oldArray.clone();

3. Use the System.arraycopy method:

System.arraycopy(oldArray, 0, newArray, 0,

oldArray.length);

4. Use the Arrays.copyOf method:

newArray = Arrays.copyOf(

oldArray, oldArray.length);

Starting position in oldArray

Starting position in newArray

Number of characters to copy

The key point is that all of these except

possibly the first make shallow copies –

see next slide

 Can copy whole arrays in several ways:
◦ double[] data = new double[4];

...

pieces = data;

◦ double pizzas = data.clone();

◦ JLabel[] labels = new JLabel[4];

...

JLabel[] moreLabels = labels.clone();

Q6-8

0
pizzas

1 4 9

0 4 91

data

pieces

labels

hello
ciao

moreLabels

 We avoided parallel arrays in our ElectionSimulator:
 Instead of storing:

◦ ArrayList<String> stateNames;

ArrayList<Integer> electoralVotes;

ArrayList<Double> percentOfVotersWhoPlanToVoteForA;
ArrayList<Double> percentOfVotersWhoPlanToVoteForB;

 We used:

◦ ArrayList<State> states;

and put the 4 pieces of data inside a State object

 Why bother?

 We did (unwisely?) use parallel arrays in StateListTest:

this.inputs = new ArrayList<String>();

this.correctResults = new ArrayList<String>();

Q9

 Array or ArrayList, that is the question

 General rule: use ArrayList
◦ Less error-prone because it grows as needed

◦ More powerful because it has methods

◦ More general because it can be extended

 Exceptions:
◦ Lots of primitive data in time critical code

◦ Two (or more) dimensional arrays

Q10

 Regression testing

 Pair programming

 Team version control

 Keep and run old test cases

 Create test cases for new bugs
◦ Like antibodies, the keep a bug from coming back

 Remember:
◦ You can right-click the project in Eclipse to run all

the unit tests

Q11-12

Video

http://agile.csc.ncsu.edu/pairlearning/educators.php#ppvideo

http://agile.csc.ncsu.edu/pairlearning/educators.php

1. A new cell is born on an
empty square if it has
exactly 3 neighbor cells

2. A cell dies of
overcrowding if it is
surrounded by 4 or
more neighbor cells

3. A cells dies of
loneliness if it has just
0 or 1 neighbor cells

x

Cell

Neighbors

 Always:
◦ Update before working

◦ Update again before committing

◦ Commit often and with good messages

 Communicate with teammates so you don’t
edit the same code simultaneously
◦ Pair programming eliminates this issue

n Team

01 lint,roserrm

02 klaassmj,baldwicd

03 wardsr,zimmerka

04 degrotpc,evansea

05 ernsteac,houstoef

06 audretad,geislekj

07 lamantds,maderli

08 wieganda,vermiljb

09 draycs,lapresga

10 weavergg,fryjc

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201020-life-teamXX

n Team

11 knightbk,cahilltr

12 channmn,hopkinaj

13 hannantt,kautzjr

14 shumwanm

Driver (and ONLY the Driver):
Check out GameOfLife from SVN
• The Navigator will check out the project in the
next session, after today’s changes are committed.

The TODO’s are numbered – do
them in the indicated order.

Follow the practices of pair
programming!

n Team

21 Ahmed Alshaali & Ian Cundiff

22 Kyle Apple & Alex Mullans

23 Tom Atnip & George Mammarella

24 Jeremy Bailey & Ryan Fuller

25 Devon Banks & Chase Mathison

26 Susan Cisneros & Katie Greenwald

27 Brian Collins & Jackson Melling

28 Alex Gumz & Richard Thai

29 Elizabeth Hines & Ben McDonald

30 Rebecca McCarthy & Ann Say

n Team

31
Brad Quamme &
Franklin Totten

32
Ruben Rodriguez &
Nathan Varner

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201020-life-teamXX

Driver (and ONLY the Driver):
Check out GameOfLife from SVN
• The Navigator will check out the project in the

next session, after today’s changes are committed.

The TODO’s are numbered – do
them in the indicated order.

Follow the practices of pair
programming!

