
API Documentation, Unit Tests, and
Object References

Check out JavadocsAndUnitTesting from SVN

 How to see them (next slide = What to do with them)

1. Update your homework project

 Right-click the project and select Team ⇒Update to HEAD

2. Examine your Tasks view

 One of the tabs at the bottom of Eclipse

 Use Window ⇒Reset Perspective if necessary

 Your Tasks view has been configured to show all comments with
TODO, FIXME and CONSIDER in them.

 If you want to use other tags too, it’s easy: Look at
Window ⇒ Preferences ⇒ Java ⇒ Compiler ⇒ Task Tags

3. Each CONSIDER “task” is a place where the grader has
suggested an improvement to your code

 The grader made a CONSIDER for every place where the grader
deducted points

 Each homework has a link to its grading rubric.

 Note especially the link in the grading rubric to
General Instructions for Grading Programs

 What to do with them: Earn Back!

◦ Within 3 days of receiving your project back, at each CONSIDER:

1. Correct the error.

2. Change the word CONSIDER to REGRADE

◦ The grader will re-grade any such tags. If you correct all your
errors, you earn back all the points that were deducted!

◦ Some assignments will allow Earn Back, some won’t.
Earn Back is available for HW1.

◦ Earn Back is a privilege – don’t abuse it. Put forth your “good faith”
effort on the project and reserve Earn Back for errors that you did
not anticipate.

◦ If the comment from the grader does not make clear what your
error is:

 First look at the grading rubric for the homework (and the link therein
to General Instructions for Grading Programs).

 Then ask questions as needed.

 Some common errors from HW 1:

◦ Leaving behind a TODO (either not doing the TODO or doing it but
not erasing the TODO comment itself)

◦ Leaving behind compiler warning messages

◦ Failing to put your own name as author of your classes

◦ Using variable names that are not self-documenting

◦ Not using the required names for the SeriesSum class and its
method

◦ Various formatting errors that Control-Shift-F corrects

◦ Declaring a for-loop variable outside of the for-loop

◦ Using double as the return type for factorial or seriesSum

 In general, use int or long for exact arithmetic. Using double opens the
door for roundoff error.

◦ Not an error, just a comment: my style is to put the class name
before static fields, e.g. Factorial.MAX instead of just MAX

API Documentation, Docs in
Eclipse, Writing your own Docs

 What’s an API?
◦ Application Programming Interface

 The Java API on-line
◦ Google for: java api documentation 6

◦ Or go to: http://java.sun.com/javase/6/docs/api/

◦ Also hopefully on your computer at

C:\Program Files\Java\jdk1.6.0_14\docs\api\index.html

 Find the documentation for the String class from
one of the above links, as follows:
◦ Click java.lang in the top-left pane

◦ Then click String in the bottom-left pane

Q1,2

Alternative: Google

for java 6 String

You need the 6 to get

the current version of Java

http://java.sun.com/javase/6/docs/api/
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html

 Setting up Java API documentation in Eclipse
◦ Should be done already, but if the next steps don’t

work for you, we’ll fix that

 Using the API documentation in Eclipse
◦ Hover text

◦ Open external documentation (Shift-F2)

 Written in special comments: /** … */

 Can come before:

◦ Class declarations

◦ Field declarations

◦ Constructor declarations

◦ Method declarations

 Eclipse is your friend!

◦ It will generate Javadoc comments automatically

◦ It will notice when you start typing a Javadoc
comment

/**

* A Ball acts on its own (for example,

* moving on the screen) and can be moved

* externally, selected or killed.

*

* @author Curt Clifton.

* Created Sep 9, 2008.

*/

public class Ball { … }

Description of
class

@author Tag
followed by author

name and date

/**

* Returns the original String converted

* to a String representing shouting.

* Does not change the original String.

*

* @param input the original string

* @return input in ALL UPPER CASE

*/

public static String shout(String input) {

return input.toUpperCase();

}

Description of method, usually starts with a verb.
Generally should say what the method accomplishes,
NOT how it does so. BTW, saying “This is a method that …” is not

helpful; the reader knows that it is a method.

@param tag
followed by
parameter
name and
(optional)

description.
Repeat for each

parameter.

@return tag followed by
description of result. Omit

for void methods.

Add javadoc comments to
MoreWordGames

• Use Quick Fix!
(click on light bulb)

 Don’t try to memorize the Java libraries
◦ Nearly 9000 classes and packages!

◦ You’ll learn them over time

 Get in the habit of writing the javadocs before
implementing the methods
◦ It will help you think before doing, a vital software

development skill

◦ This is called programming with documented stubs

◦ I’ll try to model this. If I don’t, call me on it!

Test-driven Development,
unit testing and JUnit

 From Wikipedia:
“Unit testing is a software verification and validation method in
which a programmer tests if individual units of source code are fit
for use.

 A unit is the smallest testable part of an application.

 In procedural programming a unit may be an individual function or
procedure

 [and in object oriented programming, a unit may be a method or a
class].”

 Hence writing code to test other code
◦ Focused on testing individual pieces of code (units) in

isolation

 Individual methods

 Individual classes

 Why would software engineers do unit testing?

Q3,4

 JUnit is a unit testing framework
◦ A framework is a collection of classes to be used

in another program.

◦ Does much of the work for us!

 JUnit was written by
◦ Erich Gamma

◦ Kent Beck

 Open-source software

 Now used by millions of Java developers

Q5

 MoveTester in Big Java shows how to write
tests in plain Java

 Look at JUnitMoveTester in today’s repository
◦ Shows the same test in JUnit

◦ Let’s look at the comments and code together…

 Test “boundary conditions”
◦ Intersection points: -40℃ == -40℉

◦ Zero values: 0℃ == 32℉

◦ Empty strings

 Test known values: 100℃ == 212℉
◦ But not too many

 Tests things that might go wrong
◦ Unexpected user input: “zero” when 0 is expected

 Vary things that are “important” to the code
◦ String length if method depends on it

◦ String case if method manipulates that

Important Slide: Use this
as a reference!

Walk through creating unit tests for shout in
MoreWordGames

• Name your test case class MoreWordGamesTest

Then write unit tests for whisper and holleWerld.

Remember, the goal is to write tests that cover
“interesting” cases.

Differences between primitive
types and object types in Java

 Variables of number type store values

 Variables of class type store references
◦ A reference is like a pointer in C, except

 Java keeps us from screwing up

 No & and * to worry about
(and the people say, “Amen”)

 Consider:

1. int x = 10;

2. int y = 20;

3. Rectangle box = new Rectangle(x, y, 5, 5);

Q6

10x

20y

5

10

20

5

box

 Actual value for number types

 Reference value for object types
◦ The actual object is not copied

◦ The reference value (“the pointer”) is copied

 Consider:
1. int x = 10;

2. int y = x;

3. y = 20;

4. Rectangle box = new Rectangle(5, 6, 7, 8);

5. Rectangle box2 = box;

6. box2.translate(4, 4);

Q7,8

10x

10y 8

5

6

7
box

20
box2

9

10

Begin the Written Exercise
from Homework 3

Q9,10

