CSSE 220 Day 2

Class, Objects, and Methods in Java UML Class Diagram Basics

Your questions about ...

The syllabus

- Java
- etc.

Could everyone checkout and commit the HW1 project?

Announcements

- Please do not sit in the back row or on the far right side of the room.
- Please consider making your picture on ANGEL visible to students in your courses.
\square Home \rightarrow Preferences (wrench icon) \rightarrow Personal info
- If you want all of your ANGEL mail to also go to your regular mail, too, you can set it that way.
- Home \rightarrow Preferences \rightarrow System Settings
- You can subscribe to the ANGEL discussion forums. (From the Communicate menu)

More announcements

- Cell Phones
- please set ringers to silent or quiet.
- Minimize class disruptions.
- But sometimes there are emergencies.
- Personal needs
- If you need to leave class for a drink of water, a trip to the bathroom, or anything like that, you need not ask me. Just try to minimize disruptions.
- Please be here and have your computer up and running by class time as best you can.

Bonus points for reporting bugs

- In the textbook
- In any of my materials.
- Use the Bug Report Forum on ANGEL
- More details in the Syllabus
- Subscribe to the discussion forums on ANGEL

Some major emphases of 220

- Reinforce from 120:
- Procedural programming (functions, conditionals, loops, etc)
- Using objects
- Object-Oriented Design
- Major emphasis on interfaces
- GUI programming using Java Swing
- UML class diagrams
- Software Engineering concepts
- Data Structures
- Introduce algorithm efficiency analysis
- Abstract data types
- Specifying and using standard data structures
- Implementing simple data structures (lists)

- Recursion

- Sorting and searching algorithms
as examples for the above

What will I spend my time

 doing?- Small programming assignments in class
- Larger programming problems, mostly outside of class
- Exploring the JDK documentation to find the classes and methods that you need
- Debugging!
- Reviewing other students' code
- Reading (a lot to read at the beginning; less later)
- Thinking about exercises in the textbooks
- Some written exercises, mostly from the textbook
- Discussing the material with other students

Acrobat Games: An introduction to object-oriented design

- We need

11 volunteers

- BasicAcrobat x 3
- ProudAcrobat x 2
- DoublingAcrobat
- AcrobatWithBuddy x 2
- Choreographer x 2
- Curmudgeon

This exercise is adapted from Joe Bergin's page at http://www.csis.pace.edu/~bergin/Java/RolePlay.html that describes an idea presented by Steven K. Andrianoff and David B. Levine at SIGCSE-2002

Each volunteer gets:

- 1 White sheet with instructions for how to behave
- 1 Yellow sheet (blank): scratch pad
- 3 Red sheets (blank): for returning data

- Instructor:

- Write the 6 types on the whiteboard
- Beside each type, write the names of the actors for that type - Or just refer to them as basicAcrobatl, etc. Announce instructions per the next slide

Acrobat Games (continued)

The instructor announces these commands (using students' names or basicAcrobat1, etc). When paper returns to the instructor after a count command, she will announce what is on the paper.

```
b basicAcrobat1.clap(2);
- basicAcrobat2.twirl(1);
, basicAcrobat1.twirl(2);
b basicAcrobat1.count();
b basicAcrobat3.count();
, basicAcrobat3.sing();
    proudAcrobat1.clap(3);
proudAcrobat2.twirl(1);
- proudAcrobat1.bow();
, curmudgeon.twirl(3);
- curmudgeon.clap(3);
- acrobatWithBuddy1.clap(4);
- acrobatWithBuddy1.clap(2);
| acrobatWithBuddy1.twirl(1);
acrobatWithBuddy1.nameBuddy();
```

, basicAcrobat1.clap(2) ;
, basicAcrobat2.twirl(1) ;
, basicAcrobat1.twirl(2) ;
, basicAcrobat1.count();
, basicAcrobat3.count() ;
, basicAcrobat3.sing();

- proudAcrobat1.clap(3);
, proudAcrobat2.twirl(1);
, proudAcrobat1.bow();
, curmudgeon.twirl(3) ;
, curmudgeon.clap(3);
, acrobatWithBuddy1.clap (4) ;
, acrobatWithBuddy1.clap(2) ;
- acrobatWithBuddy1.twirl(1); acrobatWithBuddy1.nameBuddy () ;
- acrobatWithBuddy2.nameBuddy();
- acrobatWithBuddy2.clap(3);
- acrobatWithBuddy2.jump (4) ;
- acrobatWithBuddy2.count();
- acrobatWithBuddy1.twirl(1);
- acrobatWithBuddy1.nameBuddy () ;
- acrobatWithBuddy2.nameBuddy () ;
- doublingAcrobat.clap (3) ;
- doublingAcrobat.count();
- doublingAcrobat.twirl (100);
// just kidding!
- choreographer1.clap(3);
- choreographer1.clap(3) ;
- choreographer2.clap (2) ;
- choreographer1.count();
- basicAcrobat1.count();

Acrobat Games (continued)

- Consider the following command:
- acrobatWithBuddy1.clap (2);
- When
- acrobatWithBuddy1's buddy is acrobatWithBuddy2
- acrobatWithBuddy2's buddy is acrobatWithBuddy1
- When
- acrobatWithBuddy1's buddy is herself

This idea has a name - recursion!

Instructions for the actors

The next six slides give the instructions that tell each actor how to behave.

- There is a single set of instructions for each type of actor:
- BasicAcrobat
- ProudAcrobat
- DoublingAcrobat
- AcrobatWithBuddy
- Choreographer
- Curmudgeon

You are a BasicAcrobat

When you are asked to:

- clap, you will be given a number.

Clap your hands that many times.

- twirl, you will be given a number. If you are asked to do anything else, say (as dramatically as you can) "I refuse".

Turn completely around that many times.

- count, write on your Red paper how many actions (claps and twirls) you have performed so far (reading that number from your Yellow paper).
- For example, after clap 2 and twirl 1 you would write 3 on the paper.
Give that Red paper to the person who asked you to count.

You are a ProudAcrobat

When you are asked to:

- clap, you will be given a number.

If you are asked to do anything else, say (as dramatically as you can) "I refuse".

Clap your hands that many times.
Say "Thank you." Then take a bow (as dramatically as you like).

- twirl, you will be given a number.

Turn completely around that many times. you have performed so far.
Say "Thank you." Then take a bow (as dramatically as you like).

- bow,

Say "Thank you." Then take a bow (as dramatically as you like).

- count, write on your Red paper how many actions (claps and twirls and bows) you have performed so far (reading that number from your Yellow paper).
- For example, after clap 2 and twirl 1 you would write 3 on the paper. Give that Red paper to the person who asked you to count. Say"Thank you." Then take a bow (as dramatically as you like).

You are a DoublingAcrobat

When you are asked to:

- clap, you will be given a number.

> If you are asked to do anything else, say (as dramatically as you can) "I refuse".

On your yellow scratch pad, keep track of how many actions you have performed so far.

Clap your hands twice that many times.

- For example, if you are told to clap 3 then you should clap 6 times.
- twirl, you will be given a number.

Turn completely around twice that many times.

- count, write on your Red paper how many actions (claps and twirls) you have performed so far (reading that number from your Yellow paper).
- For example, after twirl 2 and clap 3 you would have twirled 4 times and clapped 6 times, so you would write 10 on the paper.

Give that Red paper to the person who asked you to count.

You are an AcrobatWithBuddy

 When you are asked to:When you are given this card, before we start the role play, you should (mentally) choose another actor (anyone except a Curmudgeon) to be your Buddy. That person will be your Buddy for the rest of the exercise.

- clap, you will be given a number.

Pass the same instruction to your Buddy. Then clap your hands that many times.

If you are asked to do anything else, say (as dramatically as you can) "I refuse".

- twirl, you will be given a number.

Pass the same instruction to your Buddy.
Then turn completely around that many times.

On your yellow scratch pad, keep track of how many actions you have performed so far.

- nameYourBuddy, say (loudly) the name of your Buddy
- Count, first ask your Buddy to count. Your Buddy should then give you a Red paper with a number written on it. Add that number to the number of actions (claps and twirls) you have performed so far, and write that sum on your Red paper.

For example, after clap 2 and twirl 1 your own count would be 3. So if your Buddy gives you Red paper with (say) 7 on it, you would write 10 on your Red paper.

Give your own Red paper to the person who asked you to count.
Throw away the piece of paper from your Buddy.

You are a Choreographer

When you are given any instruction, such as twirl, clap or count, pass it on to two other actors.

- For example, if you are told to clap 3
then you might respond by saying
John, clap 3
and when John has finished, saying Mary, clap 3
assuming that John and Mary are names of two of the actors. You should not clap.
- Do not directly refuse any command. However, if either of your two actors says "I refuse," then you say "I refuse."
- If the command is count:
- Both of your actors will eventually hand you a Red piece of paper (unless they refuse, in which case you refuse).
- Add the two numbers from their papers and write the sum on your own Red paper.
- Then give your own Red paper to the person who asked you to count.

You are a Curmudgeon

- When given any instruction (such as twirl, clap, or count), ignore it. Stand up, cross your arms over your chest, smirk, and say (as smugly and dramatically as you can) "I refuse."

Then sit down again if you were originally sitting.

Acrobat Games - Debriefing: Classes and Objects

- What are the names of some classes represented in Acrobat Games?
- See below
- What are the names of some objects ?
- john, mary, ... (names of the actors in your classroom)
- Or perhaps you think of them as named by numbers:
- basicAcrobatl, basicAcrobat2, basicAcrobat3, proudAcrobat1, proudAcrobat2 etc.
-Can there be more than one object from the same class?
- Yes!

Choreographer

Acrobat Games - Debriefing:

Operations

- What are the names of some operations that the objects in Acrobat Games can do?
- clap, twirl, count, bow, nameBuddy
- We call these operations methods in Java
- Are all objects able to do the same operations?
- No. For example, only an AcrobatWithBuddy can nameBuddy
- Are all objects of the same class able to do the same operations?
- Yes. For example, all ProudAcrobats can bow

Acrobat Games - Debriefing:

Interfaces

- For each type of object, what operations can that object do?

Acrobat Games - Debriefing

A ProudAcrobat is-a BasicAcrobat

- It inherits all the attributes and operations of a BasicAcrobat

What other is-a relationships exist above? has-a?

Acrobat Games - Debriefing: arguments and returned values

- When asking an object to perform an operation, we say three things. What are they?
object that is to perform the operation

- What determines how a particular object performs the clap operation?
- Answer: What class it is an instance of. For example, a BasicAcrobat claps one way, while a ProudAcrobat claps another way. Also, what argument it is given. sally.clap(2) claps twice, while sally.clap(6) claps six times.
- Do objects have to act alone when performing?
- No. For example, a Choreographer asks others to act on its behalf.

How are the clap and count operations fundamentally different?

- Ansma clap does something, while count returns a value.

Acrobat Games - Summary

- In Acrobat Games, we saw many of the ideas of Object-Oriented Programming (OOP), including:
- Classes (BasicAcrobat, ProudAcrobat, ...)
- Objects (proudAcrobat1, proudAcrobat2, ... - instances of the classes)
- Methods (the operations clap, twirl, count, ...)
- Arguments: clap(2)
- Returned values: from count
- Encapsulation in classes and in methods
- Internal state (each object keeps track of its count)
- Inheritance (e.g., ProudAcrobat is-a BasicAcrobat)
- Associations (e.g., an AcrobatWithBuddy has-a Acrobat)
- Implementing to an interface (... implements the Acrobat interface)
- Exceptions (e.g., from Curmudgeons)
- UML class diagrams (that show relationships between classes) Recursion (when an AcrobatWithBuddy has itself as its Buddy)

Interlude - From worldmag.com

MAGAZINE

Bovine force

Quick Takes

ODDBALL OCCURRENCES

3 If Linda and Charles Everson Jr. had been driving just a bit faster, they may not have celebrated another anniversary. While celebrating their first anniversary, the Michigan couple was driving on Highway 150 alongside a cliff near Manson, Wash., when something fell from above and crushed the hood of their minivan. Instead of falling rocks, it was a falling cow. The 6oo-pound cow, which had fallen from 200 feet up, crushed the front of their minivan, but the couple escaped unscathed. The 1-year-old bovine wasn't so fortunate.

wenatcheewrid.com
 THE FIERCELY INDEPENDENT VOICE OF NORTH CENTRAL WASHINGTON

The cow heard around the world

Media milking falling-heifer story to death
The couple were driving back to their Manson hotel on Highway 150 Sunday after attending a church service in Chelan when the 600-pound heifer named Michelle dropped from above and landed on the hood of their Buick Terraza and bounced off onto the road. Everson said he was stunned and kept on driving, repeating to himself "I don't believe it. I don't believe it."

Identifiers (Names) in Java

- The rules:
- Start with letter or underscore (_)
- Followed by letters, numbers, or underscores
- The conventions:
- variableNamesLikeThis
- methodNamesLikeThis (...)
- ClassNamesLikeThis

Variables in Java

- Like C:
- int xCoordinate = 10;
- But Java catches some mistakes:
int width, height, area;
area $=$ width * height;
What does this do in C?
- Java will detect that width and height aren't initialized!

Using Objects and Methods

- Works just like Python:
- object.method(argument, ...)

- Java Example:

String name $=$ "Bob Forapples";
The dot notation is

PrintStream printer $=$ System.out;
int nameLen $=$ name.length();
printer.printf("'\%s' has \%d characters", name, nameLen);

Separating Use from Implementation

- Can use methods of an object without knowing how they are implemented
- Recall zellegraphics from csse 120:
line.setWidth (5)
 \title{

UML Class Diagram

}
 \title{

UML Class Diagram

}

Class name

String

data: char[]
boolean contains(String s)
boolean endsWith(String suffix)
int indexOf(String s)
int length()
String replace(String target, String replace)
String substring(int begin, int end)

String toLowerCase()

Exercise

2) Checkout ObjectsAndMethods from SVN
Work on UsingStrings.java

Passing Parameters

- Arguments can be any expression of the "right" type
- See example...
- What happens if we try to give substring() an explicit argument that isn't a number?
- How does the compiler know that rhit. length () evaluates to a number?
- What's the return type of length () ?
- Static types help the compiler catch bugs.
- Important in large programs

```
String rhit = "Rose-Hulman";
System.out.println("Rose");
System.out.println(rhit.substring(0, 4));
System.out.println(rhit.substring(0, 2+2));
System.out.println(rhit.substring(0, rhit.length() - 7));
System.out.println("Rose-Hulman".substring(0, 4));
```


Primitive types

figure 1.2

The eight primitive types in Java

Exercise

21 Work on SomeTypes.java

Constructing Objects

- Example:

Rectangle box $=$ new Rectangle (5, 10, 20, 30);

- Several steps are happening here:

1. Java reserves space for a Rectang7e object
2. Rectang7e's constructor runs, filling in slots in object
3. Java reserves a variable named box
4. box is set to refer to the object

Accessors and Mutators

- Accessor methods
- Get a value from an object
- Examples:
- box.getHeight()
- box.getWidth ()
- Mutator methods
- Change the state of an object (i.e., the value of one or more fields)
- Examples:

Tip: Use mutators with care!

- box.translate (10, 20)
- box.setSize (5, 5)

Reminder: In all your code:

- Write appropriate comments:
- Javadoc comments for public fields and methods.
- Explanations of anything else that is not obvious.
- Give self-documenting variable and method names:
- Use name completion in Eclipse, Ctrl-Space, to keep typing cost low and readability high.
- Use Ctrl-Shift-F in Eclipse to format your code.
- Take care of all auto-generated TODO's.
- Then delete the TODO comment.
- Correct ALL compiler warnings.

Quick Fix is your friend!

Exercise

Finish quiz
Continue working on homework

