
Object-Oriented Design

No SVN checkout today

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Software
Development

 Standardized approaches intended to:
◦ Reduce costs

◦ Increase predictability of results

 Examples:
◦ Waterfall model

◦ Spiral model

◦ “Rational Unified Process”

 Do each stage to completion
 Then do the next stage

Pipe dream model?

Analysis

Design

Implementation

Testing

Deployment

 Repeat phases in a cycle

 Produce a prototype at end of each cycle

 Get early feedback, incorporate changes

 Schedule overruns
 Scope creep

Deployment

Prototype

 Like the spiral model with very short cycles

 Pioneered by Kent Beck

 One of several “agile” methodologies, focused
on building high quality software quickly

 Rather than focus on rigid process, XP
espouses 12 key practices…

 Realistic planning

 Small releases

 Shared metaphors

 Simplicity

 Testing

 Refactoring

 Pair programming

 Collective ownership

 Continuous integration

 40-hour week

 On-site customer

 Coding standards

When you see
opportunity to make

code better, do it

Use descriptive
names Q1

A practical technique

 We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

 We will practice a common object-oriented
design technique using CRC Cards

 Like any design technique,
the key to success is practice

1. Discover classes based on
requirements

2. Determine responsibilities of
each class

3. Describe relationships between
classes

Q2

 Brainstorm a list of possible classes
◦ Anything that might work

◦ No squashing

 Prompts:
◦ Look for nouns

◦ Multiple objects are often created from each class
 so look for plural concepts

◦ Consider how much detail a concept requires:

 A lot? Probably a class

 Not much? Perhaps a primitive type

 Don’t expect to find them all  add as needed

Tired of hearing this yet?

 Look for verbs in the requirements to identify
responsibilities of your system

 Which class handles the responsibility?

 Can use CRC Cards to discover this:

◦ Classes

◦ Responsibilities

◦ Collaborators

 Use one index card per class

Class name

CollaboratorsResponsibilities

Q3

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?

◦ Yes  Return to step 1

◦ No 

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’
cards

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

 Classes usually are related to their
collaborators

 Draw a UML class diagram showing how

 Common relationships:
◦ Inheritance: only when subclass is a special case

◦ Aggregation: when one class has a field that
references another class

◦ Dependency: like aggregation but transient, usually
for method parameters, “has a” temporarily

◦ Association: any other relationship, can label the
arrow, e.g., constructs

NEW!

Q4

A team project to create a
scalable graphics program.

When JFrame’s and JPanel’s
defaults just don’t cut it.

 Answer: 5

 We use the two-argument version of add:

 JPanel p = new JPanel();

frame.add(p, BorderLayout.SOUTH);

 JFrame’s default LayoutManager
is a BorderLayout

 LayoutManager instances
tell the Java library how to
arrange components

 BorderLayout uses up to five
components

Q5

 Answer: arbitrarily many

 Additional components are added in
a line

 JPanel’s default LayoutManager
is a FlowLayout

 We can set the layout manager of a JPanel
manually if we don’t like the default:

JPanel panel = new JPanel();

panel.setLayout(new GridLayout(4,3));

panel.add(new JButton("1"));

panel.add(new JButton("2"));

panel.add(new JButton("3"));

panel.add(new JButton("4"));

// ...

panel.add(new JButton("0"));

panel.add(new JButton("#"));

frame.add(panel);

 A LayoutManager determines how components are
laid out within a container

• BorderLayout. When adding a component, you specify
center, north, south, east, or west for its location. (Default
for a JFrame.)

• FlowLayout: Components are placed left to right. When
a row is filled, start a new one. (Default for a JPanel.)

• GridLayout. All components same size, placed into a 2D
grid.

• Many others are available, including BoxLayout,
CardLayout, GridBagLayout, GroupLayout

• If you use the null for the LayoutManager, then you must
specify every location using coordinates

 More control, but it doesn’t resize automatically

Q6

 Chapter 18 of Big Java

 Swing Tutorial
◦ http://java.sun.com/docs/books/tutorial/ui/index.html

◦ Also linked from schedule

