CSSE 220 Day 14

Details on class implementation,
Interfaces and Polymorphism

Check out OnTolnterfaces from SVN

Questions:

Today: A Very Full Schedule

» Static fields and methods

» Variable scope

» Packages

» Interfaces and polymorphism

.

Call by Value

public static void main(String[] args) {
double x= 1.0;
double y = 2.5;
swapOrNot(x,y);
System.out.printin('x 1is

+ X);

}

private static void swapOrNot(double a, double b) {
double temp = a;
a b;
b temp;

Draw a box-and-pointer diagram
and predict the output.

What is static Anyway?

» static members (fields and methods)...
- are not part of objects
- are part of the class itself

» Mnemonic: objects can be passed around, but
static members stay put

.

Static Methods

» Cannot refer to this
- They aren’t in an object, so there is no this!

» Are called without an implicit parameter
- Math.sqrt(2.0)

Class name, not object
reference

B
.

When to Declare Static Methods

» Helper methods that don’t refer to this
- Example: creating list of Coordinates for glider

» Utility methods

- Example:

- public class Geometry3D {
public static double sphereVolume(double radius) {

}
}

» main() method

- Why static? What objects exist when program
starts?

Q2

Static Fields

» We've seen static final fields

» Can also have static fields that aren’t final
> Should be private

- Used for information shared between instances of a
class

Two Ways to Initialize

» private static int nextAccountNumber = 100;

» or use “static initializer” blocks:

public class Hogwarts {
private static ArrayList<String> FOUNDERS;

static {
FOUNDERS = new ArrayList<String>(Q);
FOUNDERS . add("Godric Gryfindor');

// ...

Variable Scope

» Scope: the region of a program in which a
variable can be accessed

o Parameter scope:. the whole method body
- Local variable scope: from declaration to block end:

- public double area() {
double sum = 0.0;
Point2D prev =
this.pts.get(this.pts.si1ze() - 1);
for (Point2D p : this.pts) {
sum += prev.getX() * p.getY(Q);
sum -= prev.getY() * p.getX(Q);
prev = p;
¥
return Math.abs(sum / 2.0);

Q4

Member (Field or Method) Scope

» Member scope: anywhere in the class,
including before its declaration

> This lets methods call other methods later in the
class.

» public class members can be accessed
outside the class using “qualified names”

- Math.sqrt()
- System.1n

.

Q5

Overlapping Scope and Shadowing

public class TempReading {
private double temp;

public void setTemp(double temp) {
this.temp = temp;

What does this

“temp” refer
to?

Always qualify field references

with . It prevents
accidental shadowing.

Last Bit of Static

» Static imports let us use unqualified names:

o 1import static java.lang.Math.PI;
o import static java.lang.Math.cos;
o import static java.lang.Math.sin;

» See the Polygon.drawOn() method

.

Packages

» Let us group related
classes

» We've been using them:

o javax.swing
o java.awt
> java. lang

» Can (and should) group
our own code into
packages
> Eclipse makes it easy...

Avoiding Package Name Clashes

» Remember the problem with Timer?
- Two Timer classes in different packages
- Was OK, because packages had different names

» Package naming convention: reverse URLs
- Examples:

- edu.roseHulman.csse.courseware.scheduling

- com.xkcd.comicSearch ZL G lated
Foups relate

Z Specifies the classes as

company or
organization

company sees fit

Q38

Qualified Names and Imports

» Can use import to get classes from other
packages:

- import java.awt.Rectangle;

» Suppose we have our own Rectangle class
and we want to use ours and Java’s?
> Can use “fully qualified names”:

- java.awt.Rectangle rect =
new java.awt.Rectangle(10,20,30,40);

- U-G-L-Y, but sometimes needed.

.

Package Tracking

| don’t even want this
package. Why did |
sign up for the

stinging insect of the
month club anyway?

ONUNE PACKAGE TRACKING:
CONVENIENT MAKES You
USEFUL CRAZY

#REFRESH*
[AW, STILL IN MErPHS
*REFRESH |
| AW STILLIN MEMPHIS.
#REFRESHs |
AWW, STILL (N MEMPHIS,

/

uz:

Interface Types

» EXxpress common operations that multiple
classes might have in common

» Make “client” code more reusable
» Provide method signatures and docs.

» Do not provide implementation or fields

Q9

Interface Types: Key Idea

» Interface types are like contracts

> A class can promise to implement an interface
- That is, implement every method

> Client code knows that the class will have those
methods

- Any client code designed to use the interface type
can automatically use the class!

Notation: In Code "

public interface Charge {

a4 A4
/.» s

* regular javadocs here
w /
Vector forceAt(int x, 1int y);

No “public”, Jl/"‘"‘" No method

automatically o r'egu'lar' javadocs here body,Just a
are so oy semi-colon

void drawOn(Graphics2D g);

¥

public class PointCharge implements Charge {

—/

PointCharge promises to implement all the

methods declared in the Charge interface

Notation: In UML

Distinguishes
interfaces
from classes

<<interface>>

Hollow, closed
triangular tip
means
PointCharge is a
Charge

PointCharge LinearCharge

Q10

How does all this help reuse?

» Can pass an instance of a class where an
interface type is expected
- But only /f the class implements the interface

» We could pass LinearCharges to Space’s
add(Charge c) method without changing
Space!

» Use interface types for field, method
parameter, and return types whenever
possible

- o
m

Why is this OK?

» Charge ¢ = new PointCharge(...);
Vector vl = c.forceAt(.);
c = new LinearCharge(..);
Vector v2 = c.forceAt(.);

» The type of the actual object determines the
method used.

IIIIIIIiiiiiEH!!-_; Ql2

Polymorphism

» Origin:
> Poly 2 many
> Morphism = shape

» Classes implementing an interface give many
differently “shaped” objects for the interface

type

» Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

Q13,14

