
Analysis of Algorithms continued

Recursion

 On Capstone Project?

◦ Automatic extension to Monday morning

◦ If a team member does not wish to join the team in its extension-
decision, see me to work it out

◦ Final reflection is open – do it when you are done with project!!!

 On Exam 2?

◦ Complete by now unless you have made/make arrangements with me

 On grading of Exam 1:

◦ Earn back points!

◦ Fix FIXME’s (but keep FIXME in comment) and recommit.

◦ Complete before the final exam.

 Final exam:

◦ Take it either (your choice):

 Tuesday 1 p.m. in F-231 (CSSE conference room), or

 Friday 1 p.m. in G-313 or G-315 (your choice)

◦ Open everything, HALF paper and pencil, about 90 minutes

◦ Covers last few days

 Questions on anything else?

 Algorithm analysis, review

 Recursion, review

 Recursion, making it efficient

 Data structures, how to choose

 Implementation of Linked Lists

 Work on Capstone

 Formal:
◦ We say that f(n) is O(g(n)) if and only if

◦ there exist constants c and n0 such that

◦ for every n ≥ n0 we have

◦ f(n) ≤ c × g(n)

 Informal:
◦ f(n) is roughly

proportional to g(n),
for large n

 Factorial:

 Ackermann function:

Base Case

Recursive step

Q4

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time

 Describe basic searching & sorting algorithms:
◦ Search

 Linear search of an UNsorted array

 Linear seach of a sorted array (silly, but good example)

 Binary search of a sorted array

◦ Sort

 Selection sort

 Insertion sort

 Merge sort

 Determine the best and worst case inputs for each

 Derive the run-time efficiency of each, for best and
worst-case

 For an unsorted / unorganized array:

◦ Linear search is as good as anything:

 Go through the elements of the array, one by one

 Quit when you find the element (best-case = early) or
you get to the end of the array (worst-case)

◦ We’ll see mapping techniques for unsorted but
organized data

◦ Best-case: O(1)

◦ Worst-case: O(n)

 For a sorted array:
◦ Linear search of a SORTED array:

 Go through the elements starting at the beginning

 Stop when either:

 You find the sought-for number, or

 You get past where the sought-for number would be

◦ But binary search (next slide) is MUCH better

◦ Best-case: O(1)

◦ Worst-case: O(n)

search(Comparable[] a, int start, int stop, Comparable sought) {

if (start > stop) {

return NOT_FOUND;

}

int middle = (left + right) / 2;

int comparison = a[middle].compareTo(sought);

if (comparison == 0) {

return middle;

} else if (comparison > 0) {

return search(a, 0, middle – 1, sought);

} else {

return search(a, middle + 1, stop, sought);

}

}
Best-case: O(1)

Worst-case: O(log n)

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Find the smallest number
in the unsorted part

◦ Exchange it with the element
at the beginning of the
unsorted part (making the
sorted part bigger and the
unsorted part smaller)

Repeat until
unsorted
part is
empty

Best-case: O(n2)

Worst-case: O(n2)

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first number in the
unsorted part

◦ Insert it into the correct
location in the sorted part,
moving larger values up
in the array to make room

Repeat until
unsorted
part is
empty

Best-case: O(n)

Worst-case: O(n2)

 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted

◦ Otherwise:

 Divide list into two halves

 Recursively sort the two halves

 Merge the sorted halves back together

 Analysis: use tree-based sketch…

Best-case: O(n log n)

Worst-case: O(n log n)

 Algorithm analysis, review

 Recursion, review

 Recursion, making it efficient

 Data structures, how to choose

 Implementation of Linked Lists

 Work on Capstone

 Why does recursive Fibonacci take so long?!?
◦ Answer: it recomputes subproblems repeatedly: O(2n)

 Can we fix it? Yes! Just:

1. “Memorize” every solution we find to subproblems,
and

2. Before you recursively compute a solution to a
subproblem, look it up in the “memory table” to see
if you have already computed it

This is a classic time-space tradeoff
• A deep discovery of computer science

• Tune the solution by varying the amount of storage

space used and the amount of computation performed

• Studied by “Complexity Theorists”

• Used everyday by software engineers

A more careful analysis

yields a smaller base but

it is still exponential.

 Algorithm analysis, review

 Recursion, review

 Recursion, making it efficient

 Data structures, how to choose

 Implementation of Linked Lists

 Work on Capstone

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

“random access”

 void addFirst(E element)

 void addLast(E element)

 E getFirst()

 E getLast()

 E removeFirst()

 E removeLast()

 What about accessing the middle of the list?

◦ LinkedList<E> implements Iterable<E>

Enhanced For Loop What Compiler Generates

for (String s : list) {

// do something

}

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

 A simplified version, with just the essentials

 Won’t implement the java.util.List interface

 Will have the usual linked list behavior
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow random access

 Boil down data types (e.g., lists) to their
essential operations

 Choosing a data structure for a project then
becomes:
◦ Identify the operations needed

◦ Identify the abstract data type that most efficient
supports those operations

 Goal: that you understand several basic
abstract data types and when to use them

 Array List

 Linked List

 Stack

 Queue

 Set

 Map

Implementations for all of
these are provided by the Java
Collections Framework in the

java.util package.

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)

Add/remove item O(n) (do you
see why?)

O(1) if you are
“at” the item

Q1,2

 A last-in, first-out (LIFO) data structure

 Real-world stacks
◦ Plate dispensers in the cafeteria

◦ Pancakes!

 Some uses:
◦ Tracking paths through a maze

◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)

Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

Q3

 A first-in, first-out (FIFO) data structure

 Real-world queues
◦ Waiting line at the BMV

◦ Character on Star Trek TNG

 Some uses:
◦ Scheduling access to shared resource (e.g., printer)

Operations
Provided

Efficiency

Enqueue item O(1)

Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in Java

Q4

 Unordered collections without duplicates

 Real-world sets
◦ Students

◦ Collectibles

 Some uses:
◦ Quickly checking if an item is in a collection

Operations HashSet TreeSet

Add/remove item O(1) O(lg n)

Contains? O(1) O(lg n)

Can hog space Sorts items! Q5

 Associate keys with values

 Real-world “maps”
◦ Dictionary

◦ Phone book

 Some uses:
◦ Associating student ID with transcript

◦ Associating name with high scores

Operations HashMap TreeMap

Insert key-value pair O(1) O(lg n)

Look up value for key O(1) O(lg n)

Can hog space Sorts items by key! Q6

 Algorithm analysis, review

 Recursion, review

 Recursion, making it efficient

 Data structures, how to choose

 Implementation of Linked Lists – part of your
final exam!

 Work on Capstone

