CSSE 220 Day 29

Analysis of Algorithms continued Recursion

- On Capstone Project?

Questions?

- Have your networking spike solution completed by yesterday!
- Get my help (outside of class, make an appointment) as needed
- Cycle 3 ends tomorrow! Ask in class if you want an extension.
- About 30 minutes today to work on Capstone.
- On Exam 2?
- www.rose-hulman.edu/class/csse/csse220/200930/Projects/Exam2/instructions.htm
- Take-home.
- Open everything except human resources.
- Released Wednesday 6 a.m. Complete by Friday 6 a.m.
- Designed to take about 90 minutes, you may take up to 3 hours
- All on-the-computer.

Re Exam 1:

- Bad news: I have not graded all of yours.
- Good news: I will add 10 points (of 100) to your score. 50 points if I don't have it graded by Thursday!

Outline of today's session

- Algorithm analysis, continued
- Review: Definition of big-Oh
- Applications of big-Oh:
- Loops
- Search
- Binary search (iterative implementation)
- Sort
- Insertion Sort
- Recursion
- Work on Capstone

Definition of big-Oh

- Formal:
- We say that $f(n)$ is $O(g(n))$ if and only if
- there exist constants c and n_{0} such that
- for every $n \geq n_{0}$ we have
- $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \times \mathrm{g}(\mathrm{n})$
- Informal:
- $f(n)$ is roughly proportional to $\mathrm{g}(\mathrm{n})$, for large n

Examples: Loops Loop 5: n is size of input

```
int sum = 0;
```

for (int k = 0; k $<\mathrm{n}$; ++k) $\{$ sum += k * k * k * k;
\}
for (int $k=0 ; k<n ;++k)\{$ sum += k * k * k * k;

So two principles:

1. Loop followed by loop: take bigger big-Oh
2. Loop inside loop: multiply big-Oh's

Example: Binary Search of a sorted array of Comparable's

```
int left = 0; int right = a.length; int middle;
while (left <= right) {
    middle = (left + right) / 2;
    int comparison = a[middle].compareTo(soughtItem);
    if (comparison == 0) {
        return middle;
    } else if (comparison > 0) {
        right = middle - 1;
    } else {
    left = middle + 1;
    }
}
return NOT_FOUND;
```

Average case is not obvious and depends on the input distribution.

Input size is n , which is: Worst-case runtime is O(Bestrase run-time is O (
 Average-crao n-time is O (

For worst \& average-case, how big a gain is this over linear search?
Try some numbers!
\qquad

Answer: length of array
Answer: $\quad \mathrm{O}(\log \mathrm{n})$
Answer: $\quad \mathrm{O}(1)$
Answer: $\quad \mathrm{O}(\log \mathrm{n})$

Example: Insertion Sort of an array of Comparable's

```
for (int k = 1; k < a.length; ++k) {
    insert(a, k);
}
// Inserts a[k] into its correct place in the given array.
// Precondition: The given array is SORTED from indices O to k-1, inclusive.
// Postcondition: The given array is SORTED from indices 0 to k, inclusive.
public static int insert(Comparable<T>[] a, int k) {
    int j;
    Comparable<T> x = a[k];
    while (int j = k - 1; j >= 0; --j) {
        if (a[k].compareTo(a[j]) < 0) {
            a[j + 1] = a[j];
        } else {
            break;
        }
        a[j + 1] = x;
```

\}

Example: Insertion Sort of an array of Comparable's

```
for (int k = 1; k < a.length; ++k) {
    insert(a, k);
}
// Inserts a[k] into its correct place in the given array.
public static int smallest(Comparable<T>[] a, int k) {
    int j;
    Comparable<T> x = a[k];
    while (int j = k - 1; j >= 0; --j) {
        if (a[k].compareTo(a[j]) < 0) {
            a[j + 1] = a[j];
        } else {
            break;
    }
```

// Precondition: The given array is SORTED from indices 0 to $k-1$, inclusive.
// Postcondition: The given array is SORTED from indices 0 to k, inclusive.

Worst-case is backwards sorted array. Its run-time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Best-case is sorted array. Its run-time is $\mathrm{O}(\mathrm{n})$.

Average-case run-time, under most reasonable input distributions, is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Example: String copy

```
public static String stringCopy(String s) {
    String result = "";
    for (int i = 0; I < s.length(); i++)
        result += s.charAt(i);
    return result;
}
```

Reminder: Strings are immutable.

Input size is n , which is:
Run-time of EACH iteration of loop is:
Run-time of string copy is O (\qquad)?
Would your answer change if we used character arrays instead of immutable strings?

Answer: length of string
Answer: O(n)
Answer: $\quad O\left(n^{2}\right)$
Yes, it would be $\mathrm{O}(\mathrm{n})$

Outline of rest of this lecture

- Introduction to recursion
- Motivational example: Palindrome
- Basic idea summarized
- Examples:
- Recursive definitions:
- Fibonacci
- Ackermann's
- Recursion algorithms:
- Binary search (recursive implementation)
- Merge sort

Programming Problem

- A palindrome is a phrase that reads the same forward or backward
- We'll ignore case, punctuation, and spaces.
- Examples:

A man, a plan, a canal -- Panama!
Go hang a salami, I'm a lasagna hog.

Sentence

String text
 String toString()
 boolean equals()
 boolean isPalindrome

- Add a recursive method to Sentence for computing whether Sentence is a palindrome

Recursive Functions

- Factorial:

$$
n!= \begin{cases}1 & \text { if } n \leq 1 \\ n *(n-1)! & \text { otherwise }\end{cases}
$$

Recursive step

- Ackermann function:

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ A(m-1, A(m, n-1)) & \text { otherwise }\end{cases}
$$

Recursive Helpers

Our isPalindrome() makes lots of new Sentence objects

- We can make it better with a "recursive helper method"
public boolean isPalindrome() \{ return isPalindrome(0, this.text.length() - 1); \}

Key Rules to Using Recursion

- Always have a base case that doesn't recurse
- Make sure recursive case always makes progress, by solving a smaller problem
- You gotta believe
- Trust in the recursive solution
- Just consider one step at a time

Course Goals for Searching and Sorting: You should be able to ...

- Describe basic searching \& sorting algorithms:
- Search
- Linear search of an UNsorted array
- Linear seach of a sorted array (silly, but good example)
- Binary search of a sorted array
- Sort
- Selection sort
- Insertion sort
- Merge sort
- Determine the best and worst case inputs for each
- Derive the run-time efficiency of each, for best and worst-case

Recap: Search, unorganized data

- For an unsorted / unorganized array:
- Linear search is as good as anything:
- Go through the elements of the array, one by one
- Quit when you find the element (best-case = early) or you get to the end of the array (worst-case)
- We'll see mapping techniques for unsorted but organized data

Recap: Search, sorted data

- For a sorted array:
- Linear search of a SORTED array:
- Go through the elements starting at the beginning
- Stop when either:
- You find the sought-for number, or
- You get past where the sought-for number would be
- But binary search (next slide) is MUCH better

Recap: Search, sorted data

```
search(Comparable[] a, int start, int stop, Comparable sought) {
    if (start > stop) {
    return NOT_FOUND;
    }
```

int middle $=($ left + right) $/ 2$;
int comparison $=$ a[middle]. compareTo (sought) ;
if (comparison $==0$) \{
return middle;
\} else if (comparison > 0) \{
return search (a, 0, middle - 1 , sought);
\} else \{
return search (a, middle +1 , stop, sought);
$\}$

Recap: Selection Sort

- Basic idea:
- Think of the list as having a sorted part (at the beginning) and an unsorted part (the rest)
- Find the smallest number in the unsorted part
- Exchange it with the element at the beginning of the unsorted part (making the sorted part bigger and the unsorted part smaller)

Repeat until unsorted part is empty

Recap: Insertion Sort

- Basic idea:
- Think of the list as having a sorted part (at the beginning) and an unsorted part (the rest)
- Get the first number in the unsorted part
- Insert it into the correct location in the sorted part, moving larger values up in the array to make room

Repeat until unsorted part is empty

Merge Sort

- Basic recursive idea:
- If list is length 0 or 1, then it's already sorted
- Otherwise:
- Divide list into two halves
- Recursively sort the two halves
- Merge the sorted halves back together

Analyzing Merge Sort

- Use a recurrence relation again:
- Let $\mathrm{T}(n)$ denote the worst-case number of array access to sort an array of length n
- Assume n is a power of 2 again, $n=2^{m}$, for some m
- Or use tree-based sketch...

