
Analysis of Algorithms continued



 On Capstone Project?
◦ Have your  networking spike solution   completed by today!

 Get my help (outside of class, make an appointment) as needed

◦ Cycle 2 ends today.  Complete reports.

◦ About 25 minutes today to work on Capstone.

 On Exam 2?
◦ www.rose-hulman.edu/class/csse/csse220/200930/Projects/Exam2/instructions.htm

◦ Take-home.

◦ Open everything except human resources.

◦ Released Wednesday 6 a.m.  Complete by Thursday 6 a.m.

◦ Designed to take about 90 minutes, you may take up to 3 hours

◦ Most (maybe all) on-the-computer.

 On anything?
Re Exam 1:

• Bad news:  I have not graded all of yours.

• Good news:  I will add 10 points (of 100) to your score. 

50 points if I don’t have it graded by Thursday!

http://www.rose-hulman.edu/class/csse/csse220/200930/Projects/Exam2/instructions.htm
http://www.rose-hulman.edu/class/csse/csse220/200930/Projects/Exam2/instructions.htm
http://www.rose-hulman.edu/class/csse/csse220/200930/Projects/Exam2/instructions.htm


 Algorithm analysis, continued
◦ Review:  Context, motivation

◦ Review:  Definition of big-Oh

◦ Applications of big-Oh:

 Loops

 Search

 Linear

 Binary (iterative implementation)

 Sort

 Selection Sort

 Insertion Sort

 Work on Capstone



 Correct – meets specifications

 Easy to understand, modify, write

 Uses reasonable set of resources
◦ Time (runs fast)

◦ Space (main memory)

◦ Hard-drive space

◦ Peripherals

◦ …

 Here we focus on “runs fast” – how much CPU time 
does the program / algorithm / problem take?
◦ Others are important too!



 Results from profiling depend on:
◦ Power of machine you use

 CPU, RAM, etc

◦ Operating system of machine you use

◦ State of machine you use

 What else is running?  How much RAM is available? …

◦ What inputs do you choose to run?

 Size of input

 Specific input



 Big-Oh is a mathematical definition that 
allows us to:
◦ Determine how fast a program is (in big-Oh terms)

◦ Share results with others in terms that are 
universally understood

 Features of big-Oh
◦ Allows paper-and-pencil analysis

◦ Is much easier / faster than profiling

◦ Is a function of the size of the input

◦ Focuses our attention on big inputs

◦ Is machine independent



 Run-time of the algorithm of interest on a worst-case input 
of size n is at most a constant times blah, for large n

◦ Example:

 You are given K people (so K is the size of the problem)

 You have a K x K matrix whose (j, k) entry gives how “close” 
person j is to person k

 Find the pair of people who are farthest apart.

 This is O(_____)?

 Alternatives to:

◦ Run-time:  space required, …

◦ Algorithm of interest:  Problem of interest

◦ Worst-case input:  Average-case, best-case

◦ At most:  At least => Ω and “exactly” (i.e. one constant for at least 
and another for at most) => Θ

Answer:  O(K2)



 Formal:
◦ We say that f(n) is O(g(n)) if and only if

◦ there exist constants   c   and   n0 such that

◦ for every   n ≥ n0 we have

◦ f(n) ≤ c × g(n)

 Informal:
◦ f(n) is roughly

proportional to g(n),
for large n



 Loop 1:  n is size of input

int sum = 0;

for (int k = 0; k < n; ++k) {

sum += k * k * k * k;

}

Run-time is

O(_____)?

Answer:

O(n)



 Loop 2:  m is size of input

int sum = 0;

for (int j = 0; j < m; ++j) {

for (int k = 0; k < m; ++k) {

sum += Math.sin(j)

* Math.cos(k);

}

}

Note:  the above code has bad style, in that it could trivially be 

made more efficient.  How?

• Answer:  move the computation of sin(j) outside the k loop

• Would this change our big-Oh answer?

• No.

Run-time is

O(_____)?

Answer:

O(m2)



 Loop 3:  m is size of input

int sum = 0;

for (int k = 0; k < m; ++k) {

sum += Math.sin(k) * Blah.foo(m);

}

public static int foo(int n) {

int sum = 0;

for (int j = 0; j < n; ++j) {

sum += Math.cos(j);

}

return sum;

}

Run-time is

O(_____)?

Answer:

O(m2)

This code is equivalent 

to the code in the 

previous example.



 Loop 4:  m is size of input

int sum = 0;

for (int k = 0; k < m; ++k) {

sum += Math.sin(k) * Blah.foo(k);

}

public static int foo(int n) {

int sum = 0;

for (int j = 0; j < n; ++j) {

sum += Math.cos(j);

}

return sum;

}

Run-time is

O(_____)?

Answer:

O(m2)

Key fact:  sum of k from 0 

to n - 1 is

n (n - 1) / 2

hence O(n2)

Same as previous example except previous 

example had m here.



 Loop 5:  n is size of input

int sum = 0;

for (int k = 0; k < n; ++k) {

sum += k * k * k * k;

}

for (int k = 0; k < n; ++k) {

sum += k * k * k * k;

}

Run-time is

O(_____)?

Answer:

O(n)

So two principles:

1. Loop followed by loop:  take bigger big-Oh

2. Loop inside loop:  multiply big-Oh’s



for (int i = 0; i < a.length; i++) {

if (a[i].compareTo(soughtItem) > 0) {

return NOT_FOUND;

} else if (a[i].compareTo(soughtItem) == 0) {

return i;

}

}

return NOT_FOUND;

Input size is n, which is:

Worst-case run-time is O(_____)?

Best-case run-time is O(_____)?

Average-case run-time is O(_____)?

Answer:  length of array

Answer:       O(n)

Answer:       O(1)

Answer:       O(n)

Not obvious, and depends on the input distribution

There is a 

better 

algorithm 

for finding 

an 

element in 

a sorted

array.  

What is it?



int left = 0; int right = a.length;    int middle;

while (left <= right) {

middle = (left + right) / 2;

int comparison = a[middle].compareTo(soughtItem);

if (comparison == 0) {

__________________

} else if (comparison > 0) {

_____________________

} else {

_____________________

}

}

return NOT_FOUND;

return middle;

right = middle - 1;

left = middle + 1;



int left = 0;    int right = a.length;    int middle;

while (left <= right) {

middle = (left + right) / 2;

int comparison = a[middle].compareTo(soughtItem);

if (comparison == 0) {

return middle;

} else if (comparison > 0) {

right = middle – 1;

} else {

left = middle + 1;

}

}

return NOT_FOUND;

Input size is n, which is:

Worst-case run-time is O(_____)?

Best-case run-time is O(_____)?

Average-case run-time is O(_____)?

Answer:  length of array

Answer:       O(log n)

Answer:       O(1)

Answer:       O(log n)

For worst & 

average-case, 

how big a gain 

is this over 

linear search?  

Try some 

numbers!

Average case 

is not obvious 

and depends 

on the input 

distribution.



for (int k = 0; k < a.length; ++k) {

int m = smallest(a, k);

swap(a, k, m);

}

// Returns the index of the smallest element in the given array

// from index k to the end of the array.

//    Algorithm:  linear search of UNsorted array.

public static int smallest(Comparable<T>[] a, int k);

// Swaps the elements in the array at the given indices.

public static void swap(Comparable<T>[] a, int j, int k);

Input size is n, which is:

Worst-case run-time is O(_____)?

Best-case run-time is O(_____)?

Average-case run-time is O(_____)?

Answer:  length of array

Answer:       O(n2)

Answer:       O(n2)

Answer:       O(n2)



for (int k = 1; k < a.length; ++k) {

insert(a, k);

}

// Inserts a[k] into its correct place in the given array.

// Precondition:  The given array is SORTED from indices 0 to k–1, inclusive.

// Postcondition:  The given array is SORTED from indices 0 to k, inclusive.

public static int smallest(Comparable<T>[] a, int k) {

int j;

Comparable<T> x = a[k];

while (int j = k – 1; j >= 0; --j) {

if (a[k].compareTo(a[j]) < 0) {

a[j + 1] = a[j];

} else {

break;

}

a[j + 1] = x;

}



for (int k = 1; k < a.length; ++k) {

insert(a, k);

}

// Inserts a[k] into its correct place in the given array.

// Precondition:  The given array is SORTED from indices 0 to k–1, inclusive.

// Postcondition:  The given array is SORTED from indices 0 to k, inclusive.

public static int smallest(Comparable<T>[] a, int k) {

int j;

Comparable<T> x = a[k];

while (int j = k – 1; j >= 0; --j) {

if (a[k].compareTo(a[j]) < 0) {

a[j + 1] = a[j];

} else {

break;

}

a[j + 1] = x;

}

Worst-case is ?  Its run-time is ?

Best-case is ?  Its run-time is ?

Average-case is ? [Nonsense!]

Average-case run-time is ?

Worst-case is backwards sorted 

array.  Its run-time is O(n2).

Best-case is sorted array.  Its 

run-time is O(n).

Average-case run-time, under 

most reasonable input 

distributions, is O(n2).



public static String stringCopy(String s) {

String result = "";

for (int i = 0; I < s.length(); i++)

result += s.charAt(i);

return result;

}

Input size is n, which is:

Run-time of EACH iteration of loop is:

Run-time of string copy is O(_____)?

Would your answer change if we used 

character arrays instead of immutable strings?

Answer:  length of string

Answer:       O(n)

Answer:       O(n2)

Yes, it would be O(n)

Reminder:  Strings are immutable.


