
Analysis of Algorithms intro

 What is “goodness”?

 How to measure efficiency?
◦ Profiling, Big-Oh

 Big-Oh:
◦ Motivation

◦ Informal examples

◦ Informal definition

◦ Formal definition

 Mathematical

◦ Application: examples

◦ Best, worst, average case

 Correct – meets specifications

 Easy to understand

 Easy to modify

 Easy to write

 Runs fast

 Uses reasonable set of resources
◦ Time

◦ Space (main memory)

◦ Hard-drive space

◦ Peripherals

◦ …

 What kinds of things should we measure?
◦ CPU time
◦ memory used
◦ disk transfers
◦ network bandwidth

 Mostly in this course, we focus on the first
two, and especially on CPU time

 One way to measure CPU time: profiling
◦ Run the program in a variety of situations / inputs

◦ Call System.currentTimeMillis()

 What are the problems with profiling?

 Results from profiling depend on:
◦ Power of machine you use

 CPU, RAM, etc

◦ State of machine you use

 What else is running? How much RAM is available? …

◦ What inputs do you choose to run?

 Size of input

 Specific input

 Big-Oh is a mathematical definition that
allows us to:
◦ Determine how fast a program is (in big-Oh terms)

◦ Share results with others in terms that are
universally understood

 Features of big-Oh
◦ Allows paper-and-pencil analysis

◦ Is much easier / faster than profiling

◦ Is a function of the size of the input

◦ Focuses our attention on big inputs

◦ Is machine independent

for (int i=0; i < a.length; i++) {

if (a[i].compareTo(soughtItem) > 0)

return NOT_FOUND; // Explain why this is NOT cohesive.

// NOT_FOUND must be …?

else if (a[i].compareTo(soughtItem) == 0)

return i;

}

return NOT_FOUND;

•What should we count?

•Best case, worst case, average case?

Q5

Does the following method actually create and return a copy of the

string s?

public static String stringCopy(String s) {

String result = "";

for (int i=0; i<s.length(); i++)

result += s.charAt(i);

return result;

}

What can we say about the running time of the method?

(where N is the length of the string s)

What should we count?

How can we do the copy more efficiently?

Don’t be too quick to make assumptions

when analyzing an algorithm!

Q6

Always code as if the guy who
ends up maintaining your code
will be a violent psychopath
who knows where you live.

--Martin Golding

Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.2
Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

a.k.a "log linear"

 We only really care what happens when N
(the size of a problem) gets large

 Is the function basically linear, quadratic,
etc. ?

 For example, when n is large, the difference
between n2 and n2 – 3 is negligible

 Run-time of the algorithm of interest on a
worst-case input of size n is:
◦ at most a constant times blah, for large n

 Example: run-time of the linear search
algorithm on a worst-case input of size n is:
◦ O(n)

 Alternatives to:
◦ Run-time: space required, …

◦ Algorithm of interest: Problem of interest

◦ Worst-case input: Average-case, best-case

◦ At most: At least => Ω and “exactly” (i.e. one
constant for at least and another for at most) => Θ

≥In this course,

we won't be so

formal . We'll

just say that

f(N) is O(g(N)

means that f(n)

is eventually

smaller than a

constant times

g(n).

Q7

there exists a c such that

for all n >= n0

≥

 f(N) is O(g(N)) if there is a constant c such
that for sufficiently large N, f(N) ≤ cg(N)
◦ Informally, as N gets large the growth rate of f is

bounded above by the growth rate of g

 f(N) is Ω(g(N)) if there is a constant c such
that for sufficiently large N, f(N) ≥ cg(N)
◦ Informally, as N gets large the growth rate of f is

bounded below by the growth rate of g

 f(N) is Θ(g(N)) if f(N) is O(g(n)) and f(N) is Ω(g(N))

 Informally, as N gets large the growth rate of f is the
same as the growth rate of g

 consider the limit

 What does it say about asymptotics if this limit is
zero, nonzero, infinite?

 We could say that knowing the limit is a sufficient
but not necessary condition for recognizing big-oh
relationships.

 It will be all we need for all examples in this course.

)(

)(
lim

ng

nf

n

Q8

1. N and N2

2. N2 + 3N + 2 and N2

3. N + sin(N) and N
4. log N and N
5. N log N and N2

6. Na and Nn

7. aN and bN (a < b)
8. logaN and logbN (a < b)
9. N! and NN

Q9

 Give tightest bound you can
◦ Saying that 3N+2 is O(N3) is true, but not as useful as

saying it’s O(N) [What about Θ(N3) ?]

 Simplify:
◦ You could say:
◦ 3n+2 is O(5n-3log(n) + 17)
◦ and it would be technically correct…
◦ It would also be poor taste … and put me in a bad mood.

 But… if I ask “true or false: 3n+2 is O(n3)”,
what’s the answer?
◦ True!
◦ There may be “trick” questions like this on assignments and

exams.
◦ But they aren’t really tricks, just following the big-Oh

definition!

 Sorting and searching
◦ Why we study these

 See project: SortingAndSearching
◦ Counting: Loops

