CSSE 220 Day 27

Analysis of Algorithms intro

Program "goodness"

- What is "goodness"?
- How to measure efficiency?
- Profiling, Big-Oh
- Big-Oh:
- Motivation
- Informal examples
- Informal definition
- Formal definition
- Mathematical
- Application: examples
- Best, worst, average case

What makes a program "good"

- Correct - meets specifications
- Easy to understand
- Easy to modify
- Easy to write
- Runs fast
- Uses reasonable set of resources
- Time
- Space (main memory)
- Hard-drive space
- Peripherals

Measuring program effciency

- What kinds of things should we measure?
- CPU time
- memory used
- disk transfers
- network bandwidth
- Mostly in this course, we focus on the first two, and especially on CPU time
- One way to measure CPU time: profiling
- Run the program in a variety of situations / inputs
- Call System. currentTimeMillis()
-What are the problems with profiling?

Big-Oh motivation: why profiling is not enough

- Results from profiling depend on:
- Power of machine you use
- CPU, RAM, etc
- State of machine you use
- What else is running? How much RAM is available? ...
- What inputs do you choose to run?
- Size of input
- Specific input

Big-Oh motivation: what it provides

- Big-Oh is a mathematical definition that allows us to:
- Determine how fast a program is (in big-Oh terms)
- Share results with others in terms that are universally understood
- Features of big-Oh
- Allows paper-and-pencil analysis
- Is much easier / faster than profiling
- Is a function of the size of the input
- Focuses our attention on big inputs
- Is machine independent

Familiar example:
 Linear search of a sorted array of Comparable items

```
for (int i=0; i < a.length; i++) {
    if ( a[i].compareTo(soughtItem) > 0 )
        return NOT_FOUND; // Explain why this is NOT cohesive.
                                // NOT_FOUND must be ...?
    else if ( a[i].compareTo(soughtItem) == 0 )
        return i;
}
return NOT FOUND;
```

-What should we count?
-Best case, worst case, average case?

Another algorithm analysis example

Does the following method actually create and return a copy of the string s ?
What can we say about the running time of the method?
(where \mathbf{N} is the length of the string \mathbf{s})
What should we count?
public static String stringCopy(String s) \{
String result = "";
for (int i=0; i<s.length(); i++)
result += s.charAt(i);
return result;
\} Don't be too quick to make assumptions when analyzing an algorithm!
How can we do the copy more efficiently?

Interlude

Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where you live. --Martin Golding

Figure 5.1
Running times for small inputs

Figure 5.2

Running times for moderate inputs

Figure 5.3

Functions in order of increasing growth rate

FUnction	Name
c	Constant
$\log N$	Logarithmic
$\log ^{2} N$	Log-squared
N	Linear
$N \log N$	Quadratic
N^{2}	Cubic
N^{3}	Exponential
2^{N}	

Asymptotic analysis

- We only really care what happens when N (the size of a problem) gets large
- Is the function basically linear, quadratic, etc. ?
- For example, when \mathbf{n} is large, the difference between n^{2} and $n^{2}-3$ is negligible

Informal definition of big-Oh As applied to run-time analysis

- Run-time of the algorithm of interest on a worst-case input of size n is:
- at most a constant times blah, for large n
- Example: run-time of the linear search algorithm on a worst-case input of size n is:
- O(n)
- Alternatives to:
- Run-time: space required, ...
- Algorithm of interest: Problem of interest
- Worst-case input: Average-case, best-case
- At most: At least $=>\Omega$ and "exactly" (i.e. one
censtant for at least and another for at most) $=>\Theta$
- The "Big-Oh" Notation
- given functions $\mathrm{f}(n)$ and $\mathrm{g}(n)$, we say that $\mathrm{f}(n)$ is $\boldsymbol{O}(\mathrm{g}(n))$ if and only if there exists a c such that $\mathrm{f}(n) \leq \mathrm{c} \mathrm{g}(n)$ for $n \geq n_{0} \quad$ for all $\mathrm{n}>=\mathrm{n} 0$
- c and n_{0} are constants, $\mathrm{f}(n)$ and $\mathrm{g}(n)$ are functions over non-negative integers

Q7

- Simple Rule: Drop lower order terms and constant factors.
- $7 n-3$ is $\boldsymbol{O}(n)$
$-8 n^{2} \log n+5 n^{2}+n$ is $\boldsymbol{O}\left(n^{2} \log n\right)$
- Special classes of algorithms:
- logarithmic:
$\boldsymbol{O}(\log n)$
- linear
$\boldsymbol{O}(n)$
- quadratic
$\boldsymbol{O}\left(n^{2}\right)$
- polynomial
$\boldsymbol{O}\left(n^{\mathrm{k}}\right), \mathrm{k} \geq 1$
- exponential
$\boldsymbol{O}\left(\mathrm{a}^{n}\right), n>1$
- "Relatives" of the Big-Oh
$-\Omega(\mathrm{f}(n))$: Big Omega
$-\Theta(\mathrm{f}(n))$: Big Theta

Recap: $0, \Omega, \Theta$

- $f(N)$ is $O(g(N))$ if there is a constant c such that for sufficiently large $\mathrm{N}, \mathrm{f}(\mathrm{N}) \leq \mathrm{cg}(\mathrm{N})$
- Informally, as N gets large the growth rate of f is bounded above by the growth rate of g
- $f(N)$ is $\Omega(g(N))$ if there is a constant c such that for sufficiently large $N, f(N) \geq c g(N)$
- Informally, as N gets large the growth rate of f is bounded below by the growth rate of g
- $f(N)$ is $\Theta(g(N))$ if $f(N)$ is $O(g(n))$ and $f(N)$ is $\Omega(g(N))$ - Informally, as N gets large the growth rate of f is the same as the growth rate of \mathbf{g}

Limits and asymptotics

- consider the limit

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

- What does it say about asymptotics if this limit is zero, nonzero, infinite?
- We could say that knowing the limit is a sufficient but not necessary condition for recognizing big-oh relationships.
- It will be all we need for all examples in this course.

Apply this limit property to the following pairs of functions

1. N and N^{2}
2. $N^{2}+3 N+2$ and N^{2}
3. $N+\sin (N)$ and N
4. $\log N$ and N
5. $N \log N$ and N^{2}
6. N^{a} and N^{n}
7. a^{N} and $b^{N}(a<b)$
8. $\log _{a} N$ and $\log _{b} N(a<b)$
9. $N!$ and N^{N}

Big-Oh Style

- Give tightest bound you can

- Saying that $3 \mathrm{~N}+2$ is $\mathrm{O}\left(\mathrm{N}^{3}\right)$ is true, but not as useful as saying it's $O(N) \quad\left[\right.$ What about $\Theta\left(N^{3}\right)$?]
- Simplify:
- You could say:
- $3 n+2$ is $O(5 n-3 \log (n)+17)$
- and it would be technically correct...
- It would also be poor taste ... and put me in a bad mood.
- But... if I ask "true or false: $3 n+2$ is $O\left(n^{3}\right)$ ", what's the answer?
- True!
- There may be "trick" questions like this on assignments and exams.
- But they aren't really tricks, just following the big-Oh definition!

Examples / practice

- Sorting and searching
- Why we study these
- See project: SortingAndSearching
- Counting: Loops

