
Threads and Animation

Check out ThreadsIntro project from SVN

 Often we want our program to do multiple
(semi) independent tasks at the same time

 Each thread of execution can be assigned to a
different processor, or one processor can
simulate simultaneous execution through "time
slices" (each typically a large fraction of a
millisecond)

Time
Slices 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

running
thread 1

running
thread 2

Q1-2

◦ Animation: runs while still allowing user interaction

◦ A server (such as a web server) communicates with
multiple clients

◦ Allow a slow activity to occur in the background
◦ Example: While a game is loading its (large) data files, another

thread might display an interesting animation to the player or
ask the user for relevant information

◦ Animate multiple objects, e.g.
◦ Each Ball in BallWorlds

◦ The timers in the soon-to-be-seen CounterThreads example

◦ In general, allow separate objects to “do their thing”
separately

 There are always two default threads:
 The one that starts in main
 The one that handles events

You can create others

 What can you do with a Thread?
 Construct it
 Start it
 Suspend it

Thread.sleep(numberOfMilliseconds);

 Interrupt it, perhaps to cause it to halt

Q3-4

 How to construct and run a new thread
1. Define a new class that implements the Runnable interface
 Runnable has one method: public void run();

2. Place the code for the threaded task in the run method:
class MyRunnable implements Runnable {

public void run () {
// task statements go here; presumably a loop

}
}

3. Create an object of this class:
Runnable r = new MyRunnable();

4. Construct a Thread object from this Runnable object:
Thread t = new Thread(r);

5. Call the start method to start the thread:
t.start();

Note: a common pattern is to have the Runnable construct and start its
own Thread in its constructor:

new Thread(this).start();
Q5

Open Eclipse and enter the SVN repository perspective. Then:
1. Refresh your individual repository
2. Checkout the ThreadsIntro project you see there

We will run and study some of its subprojects:

 Greetings –simple threads, different wait times

 AnimatedBall – move balls, stop with click

 CounterThreads – multiple independent counters

 CounterThreadsRadioButtons – same as above, but with radio buttons

The remaining are more advanced than we will use in this course,
dealing with race conditions and synchronization. Detailed
descriptions are in Big Java Chapter 20
◦ BankAccount
◦ SelectionSorter

Thu Jan 03 16:09:36 EST 2008 Hello, World!

Thu Jan 03 16:09:36 EST 2008 Goodbye, World!

Thu Jan 03 16:09:36 EST 2008 Hello, World!

Thu Jan 03 16:09:36 EST 2008 Goodbye, World!

Thu Jan 03 16:09:36 EST 2008 Goodbye, World!

Thu Jan 03 16:09:36 EST 2008 Hello, World!

Thu Jan 03 16:09:37 EST 2008 Goodbye, World!

Thu Jan 03 16:09:37 EST 2008 Hello, World!

Thu Jan 03 16:09:38 EST 2008 Hello, World!

Thu Jan 03 16:09:38 EST 2008 Goodbye, World!

Thu Jan 03 16:09:38 EST 2008 Goodbye, World!

Thu Jan 03 16:09:38 EST 2008 Hello, World!

Thu Jan 03 16:09:39 EST 2008 Goodbye, World!

Thu Jan 03 16:09:39 EST 2008 Goodbye, World!

Thu Jan 03 16:09:39 EST 2008 Goodbye, World!

Thu Jan 03 16:09:39 EST 2008 Hello, World!

Thu Jan 03 16:09:39 EST 2008 Hello, World!

Thu Jan 03 16:09:39 EST 2008 Goodbye, World!

Thu Jan 03 16:09:40 EST 2008 Hello, World!

Thu Jan 03 16:09:40 EST 2008 Goodbye, World!

. . .

One thread prints
the Hello
messages; the
other Thread prints
the Goodbye
messages.

Each thread sleeps
for a random
amount of time
after printing each
line.

Try it yourself!
This example was adapted from Cay
Horstmann's Big Java 3ed, Chapter 20

public class GreetingThreadTester{

public static void main(String[] args){

// Create the two Runnable objects

GreetingRunnable r1 = new GreetingRunnable("Hello, World!");

GreetingRunnable r2 = new GreetingRunnable("Goodbye, World!");

// Create the threads from the Runnable objects

Thread t1 = new Thread(r1);

Thread t2 = new Thread(r2);

// Start the threads running.

t1.start();

t2.start();

}

}

We do not call run()
directly.
Instead we call start(),
which sets up the thread
environment and then
calls run() for us.

import java.util.Date;

public class GreetingRunnable implements Runnable {

private String greeting;

private static final int REPETITIONS = 15;

private static final int DELAY = 1000;

public GreetingRunnable(String aGreeting) {

this.greeting = aGreeting;

}

public void run() {

try {

for (int i = 1; i <= GreetingRunnable.REPETITIONS; i++){

Date now = new Date();

System.out.println(now + " " + this.greeting);

Thread.sleep(

(int) (GreetingRunnable.DELAY * Math.random()));

}

} catch (InterruptedException exception) {

; // Do nothing, just continue running

}

}

}
If a thread is interrupted while it is sleeping, an InterruptedException is thrown. Q6

 A simplified version of the way BallWorlds
does animation

 When balls are created, they are given
position, velocity, and color

 Our run() method tells each of the balls to
move, then redraws them

 Clicking the mouse turns movement off/on

 Demonstrate the program

public class AnimatedBallViewer {

static final int FRAME_WIDTH = 600;

static final int FRAME_HEIGHT = 500;

public static void main(String[] args){

JFrame frame = new JFrame();

frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);

frame.setTitle("BallAnimation");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

AnimatedBallComponent component = new AnimatedBallComponent();

frame.add(component);

frame.setVisible(true);

new Thread(component).start();

}

}

This class has all of

the usual stuff, plus

this last line of code

that starts the

animation.

class Ball {

private double centerX, centerY, velX, velY;

private Ellipse2D.Double ellipse;

private Color color;

private static final double radius = 15;

public Ball(double cx, double cy, double vx, double vy, Color c){

this.centerX = cx;

this.centerY = cy;

this.velX = vx;

this.velY = vy;

this.color = c;

this.ellipse = new Ellipse2D.Double (

this.centerX-radius, this.centerY-radius,

2*radius, 2*radius);

}

public void fill (Graphics2D g2) {

g2.setColor(this.color);

g2.fill(ellipse);

}

public void move (){

this.ellipse.x += this.velX;

this.ellipse.y += this.velY;

}

}

Everything here should
look familiar, similar to
code that you wrote for
BallWorlds.

public class AnimatedBallComponent extends JComponent

implements Runnable, MouseListener {

private ArrayList<Ball> balls = new ArrayList<Ball>();

private boolean moving = true;

public static final long DELAY = 30;

public static final int ITERATIONS = 300;

public AnimatedBallComponent() {

super();

balls.add(new Ball(40, 50, 8, 5, Color.BLUE));

balls.add(new Ball(500, 400, -3, -6, Color.RED));

balls.add(new Ball(30, 300, 4, -3, Color.GREEN));

this.addMouseListener(this);

}

Again, there
should be no
surprises here!

public void run() {

for (int i=0; i<ITERATIONS; i++) {

if (moving){

for (Ball b:balls)

b.move();

this.repaint();

}

try {

Thread.sleep(DELAY);

} catch (InterruptedException e) {}

}

}

public void paintComponent(Graphics g){

Graphics2D g2 = (Graphics2D)g;

for (Ball b:balls)

b.fill(g2);

}

public void mousePressed (MouseEvent arg0) {

moving = !moving;

}

Each time through
the loop (if moving),
tell each ball to
move, then repaint

Sleep for a while

Draw each ball

Toggle "moving"
when the mouse
is pressed

Q7

One could let this loop run forever [while (true) { … }] but we chose here to make sure that it ends

 With regular buttons

With radio buttons

Run it.

How many
threads
does this
application
appear to
have?

public class CounterThreads {

public static void main (String []args) {

JFrame win = new JFrame();

Container c = win.getContentPane();

win.setSize(600, 250);

c.setLayout(new GridLayout(2, 2, 10, 0));

c.add(new CounterPane(200));

c.add(new CounterPane(500));

c.add(new CounterPane(50)); // this one will count fast!

c.add(new CounterPane(1000));

win.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

win.setVisible(true);

}

}

Same old stuff!

class CounterPane extends JComponent implements Runnable {

private int delay; // sleep time before changing counter

private int direction = 0; // current increment of counter

private JLabel display = new JLabel("0");

// Constants to define counting directions:

private static final int COUNT_UP = 1; // Declaring these

private static final int COUNT_DOWN = -1; // constants avoids

private static final int COUNT_STILL = 0; // "magic numbers"

private static final int BORDER_WIDTH = 3;

private static final int FONT_SIZE = 60;

public CounterPane(int delay) {

JButton upButton = new JButton("Up"); // Note that these do

JButton downButton = new JButton("Down"); // NOT have to be fields

JButton stopButton = new JButton("Stop"); // of this class.

this.delay = delay; // milliseconds to sleep

this.setLayout(new GridLayout(2, 1, 5, 5));

// top row for display, bottom for buttons.

JPanel buttonPanel = new JPanel();

buttonPanel.setLayout(new GridLayout(1, 3, 8, 1));

display.setHorizontalAlignment(SwingConstants.CENTER);

display.setFont(new Font(null, Font.BOLD, FONT_SIZE));

// make the number display big!

this.add(display);

this.add(buttonPanel);

this.setBorder(BorderFactory.createLineBorder(Color.blue,

BORDER_WIDTH));

// Any Swing component can have a border.

this.addButton(buttonPanel, upButton, Color.orange, COUNT_UP);

this.addButton(buttonPanel, downButton, Color.cyan, COUNT_DOWN);

this.addButton(buttonPanel, stopButton, Color.pink, COUNT_STILL);

Thread t = new Thread(this);

t.start();

}

Put a simple border around the
panel. There are also more complex
border styles that you can use.

A lot of the repetitive work is done
by the calls to addButton().

 The action listener added here is an anonymous inner
class that implements ActionListener.

 Because it is an inner class, its method can access
this CounterPane's direction instance variable and
the addButton’s final dir local variable.

// Adds a control button to the panel, and creates an

// ActionListener that sets the count direction.

private void addButton(Container container,

JButton button,

Color color,

final int dir) {

container.add(button);

button.setBackground(color);

button.addActionListener(new ActionListener () {

public void actionPerformed(ActionEvent e) {

this.direction = dir;

}

});

}

Note that each button gets its own ActionListener
class, created at runtime. This is Swing's
"preferred way" of providing ActionListeners.

The value of dir will be 1,
-1, or 0, to indicate counting
up, down, or neither.

JPanel is a subclass
of Container

 This method is short and simple, because
direction is always the amount to be added to
the counter (1, -1, or 0).

public void run() {

try {

do {

Thread.sleep(delay);

display.setText(Integer.parseInt(display.getText())

+ direction + "");

} while (true);

} catch (InterruptedException e) { }

}

}

 Look through the code, discussing it with your
partner and/or lab assistants until you think you
understand it all. Answer the following questions:

1. How does a CounterPane know whether to count
up or down or stay the same?

2. When a counter is not changing, does its thread
use less CPU time than one that is changing?

3. Would it be easy to add code to the main method
that creates a SuperStop button, so that clicking
this button stops all counters? Explain.

Q8-10

Answer: Yes. Have CounterPane respond to the SuperStop

button; hence all instances of CounterPane would respond.

public CounterPaneRadio(int delay) {

JRadioButton upButton = new JRadioButton("Up");

JRadioButton downButton = new JRadioButton("Down");

JRadioButton stopButton = new JRadioButton("Stop");

ButtonGroup group = new ButtonGroup();

group.add(upButton);

group.add(downButton);

group.add(stopButton);

stopButton.setSelected(true);

. . .

And we remove the Color parameter from addButton()

 A thread ends when its run method
terminates.

 You can cause its run method to terminate in
either of two ways:
1. Via the Runnable

2. Via the Thread itself

The next slides show the details of these.

Q11

public class Foo implements Runnable {

private boolean stopNow = false;

public void run() {

while (! stopNow) {

// do your tasks

}

}

public void stopRunning() {

this.stopNow = true;

}

} If an object calls stopRunning, the thread
stops soon thereafter. (How soon?)

public class FooBar {

private Thread thread;

public FooBar() {

this.thread =

new Thread(new Foo());

this.thread.start();

}

public void stopRunning() {

this.thread.interrupt();

}

}

public class Foo implements Runnable {

public void run() {

while (true) {

try {

// do your tasks

} catch (

InterruptException e) {

return;

}

}

}

}

If an object calls stopRunning, the thread
stops soon thereafter. (How soon?)

