
� Sometimes a new class is a special case a special case a special case a special case of the
concept represented by another
◦ A SavingsAccount isisisis----aaaa BankAccount

◦ An Employee isisisis----aaaa Person

� Can extendextendextendextend existing class, changing just what we
need

The new class inheritsinheritsinheritsinherits� The new class inheritsinheritsinheritsinherits
from the existing one:
◦ all methods

◦ all fields

� Can add new fields/methods

� Or override existing methods

Object

BankAccount

SavingsAccount CheckingAccount

public class BankAccount {
private double balance;

public BankAccount() {
this(0.00);

}

public BankAccount(double initialBalance) {
this.balance = initialBalance;

}

public void deposit(double amount) {
this.balance += amount;

Subclasses will inherit this field even
though they cannot directly access it
• Subclasses inherit all fields

Calls the one-parameter constructor

this.balance += amount;
}

public void withdraw(double amount) {
this.balance -= amount;

}

protected final double getBalance() {
return this.balance;

}
}

protected means that
subclasses and classes
in the same package can
access it.
• public makes more sense here,

but I have made it protected just
so that you can see an example

final means that subclasses are not
permitted to override this method
• We want to count on it working just like this

public class SavingsAccount extends BankAccount {

private double interestRate;

public SavingsAccount(double rate) {

this.interestRate = rate;

}

public SavingsAccount(double rate, double initBalance) {

super(initBalance);

Fields:
• Inherits balance field

• DON’T put your own
balance field here!

• Adds interestRate field

Implicit super(); that calls
superclass’ no-parameter constructor

super(initBalance);

this.interestRate = rate;

}

public void addInterest() {

double interest;

interest = this.getBalance()

* this.interestRate / 100;

this.deposit(interest);

}

}

Calls superclass’ constructor
• Must be first statement in
constructor

Calls inherited getBalance
and deposit methods

Adds this method
to those inherited

public class CheckingAccount extends BankAccount {

private int transactionCount;

public CheckingAccount(double initialBalance) {

super(initialBalance);

this.transactionCount = 0;

}

@Override

public void withdraw() {

super.withdraw();

Overrides inherited withdraw
method and also calls inherited
withdraw methodsuper.withdraw();

++ this.transactionCount;

}

public void runThisOnFirstDayOfMonth) {

if (this.transactionCount > 100) {

super.withdraw(10.00);

}

this.transactionCount = 0;

}

}

withdraw method
• The class would have, but I have not shown,

a similar deposit method.

This (rather silly) checking account
charges a $10 fee if you do more
than 100 transactions in a month
• Note call to superclass’ withdraw

