
Inheritance
Abstract Classes

Check out Inheritance from SVN





 Sometimes a new class is a 
special case of the concept 
represented by another 

 Can “borrow” from an existing 
class, changing just what we 
need

 The new class inherits from 
the existing one:
◦ all methods
◦ all fields

 Can add new fields/methods
 Or override existing methods

Q1



 class SavingsAccount extends BankAccount
◦ adds interest earning, while keeping other traits

 class Employee extends Person
◦ adds pay info. and methods, keeps other traits

 class Manager extends Employee
◦ adds info. about employees managed, changes pay 

mechanism, keeps other traits



 class SavingsAccount extends BankAccount {
// added fields
// added methods

}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

Q2



 A Sophomore IS-A   Student IS-A   Person.
 A Continent IS-A   LandMass
 An   HPCompaqNW8440 IS-A   Laptop Computer
 An   iPod IS-A  MP3Player
 A Square IS-A   Rectangle

 It is not true that a Continent IS-A Country or 
vice-versa.

 Instead, we say that a Continent HAS-A Country.

Q3



 String extends Object
 ArrayList extends AbstractCollection
 IOException extends Exception
 BigInteger extends Number
 BufferedReader extends Reader
 JButton extends JComponent
 MouseListener extends EventListener
 JFrame extends Window



The “superest” 
class in Java

Still means 
“is a”

Solid line 
shows 

inheritance

Q4



 class ClickHandler implements MouseListener

◦ ClickHandler promises to implement all the 
methods of MouseListener

 class CheckingAccount extends BankAccount

◦ CheckingAccount inherits (or overrides) all the 
methods of BankAccount

For client code 
reuse

For 
implementation 

code reuse



Still more 
subclasses of 
JComponent:

JColorChooser
JComboBox

JFileChooser
JList

JMenuBar
JProgressBar

JSrollBar
JScrollPane

JSLider
JSplitPAne

JTabbedPane
JTable
JTree

Going up (in the hierarchy)!
JComponent extends Container

Container extends Component
Component extends Object



 Inherit methods unchanged
 No additional code needed in subclass

 Override methods
◦ Declare a new method with same signature to use 

instead of superclass method

 Partially Override methods
◦ call super.sameMethod( ), and also add some other code. 

 Add entirely new methods not in superclass

Q5



 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER!  Don’t use 
the same name as a 

superclass field!

Q6



 Calling superclass method:
◦ super.methodName(args);

 Calling superclass constructor:
◦ super(args);

Must be the first line of 
the subclass constructor.  

If not present, then 
super() is called.

Q7



 Halfway between superclasses and interfaces
◦ Like regular superclass:
 Provide implementation of some methods
◦ Like interfaces
 Just provide signatures and docs of other methods
 Can’t be instantiated

 Example:
◦ public abstract class BankAccount {

/** documentation here */
public abstract void deductFees();
…

}

Elided methods as before



 Review
◦ public—any code can see it
◦ private—only the class itself can see it

 Others
◦ default (i.e., no modifier)—only code 

in the same package can see it
 good choice for classes
◦ protected—like default, but 

subclasses also have access
 sometimes useful for helper methods

Fields should 
always be 
private, 
except 

possibly for 
final fields.  

Use a 
protected
accessor if 

your subclass 
needs access 
to a field in a 

superclass

Q9


	CSSE 220 Day 6
	Questions?
	Inheritance
	Code Examples
	Notation and Terminology
	Other natural examples
	Examples From the Java API Classes
	Inheritance in UML
	Interfaces vs. Inheritance
	Inheritance Run Amok?
	With Methods, Subclasses can:
	With Fields, Subclasses:
	Super Calls
	Abstract Classes
	Access Modifiers

