
Generic methods and Function Objects

Mini-project intro 

Check Out FunctionObjectsAndSorting project from SVN



Exam
Anything else?

Day 23 HW is due Monday
◦ Finish function objects exercise
◦ Sorting Exercise
◦ Finish Vector Graphics
◦ Team member evaluation survey
◦ Prepare a 5-minute demo for Monday's class.



1. N and N2 

2. N2 + 3N + 2 and N2

3. N + sin(N) and N 
4. log N and N  
5. N log N and N2

6. Na and bN

7. aN and bN (a < b)
8. logaN and logbN (a < b)
9. N! and NN

Q9





Consider the following methods:

Can we write print in a generic way 
so we do not have to have a 
separate method for each type of array?

public static void main(String[] args) {
String [] ss = {"abc", "def", "ghij"};
Integer [] ii = {new Integer(5), new Integer(6)};
print(ss);
print(ii);

}

public static void print(String[] strings){
for (String s: strings)

System.out.println(s);
}

public static void print(Integer[] ints){
for (Integer i: ints)

System.out.println(i);
}

}

This code is 
in today's 
repository



public static <T> void print (T[] a){
for (T obj: a)

System.out.println(obj);
}

The type variable <T> before the method's 
return type tells the compiler: T will be a 
generic type for this method.  Substitute for it 
the actual type of the argument.
This method can be called with any array of 
objects.
For some other methods, we need to 
constrain the generic type used (next slide)



Suppose want a generic method to take an array as 
its only argument, and return the smallest item in 
the array.
This only makes sense if the base type of the array 
implements the Comparable interface.

This works, but gives a warning  
◦ Type safety: The method compareTo(Object) belongs to 

the raw type Comparable. References to generic type 
Comparable<T>  should be parameterized

How to fix it?

public static <T extends Comparable> T min (T[] a) {
T smallest = a[0];
for (int i=1; i<a.length; i++)

if (smallest.compareTo(a[i]) > 0)
smallest = a[i];

return smallest;
}



Note that in this context "extends" means 
either "extends" or "implements".
But this could be too restrictive.  Perhaps we 
want to be able to be able to compare 
elements of a subclass with elements of a 
superclass (as in the Shape hierarchy from a 
couple of weeks ago).

public static <T extends Comparable<T>> T min (T[] a) {
T smallest = a[0];
for (int i=1; i<a.length; i++)

if (smallest.compareTo(a[i]) > 0)
smallest = a[i];

return smallest;
}



The ? is a "wild card".  <? super T> says we 
can compare to an element of any 
superclass of T.
For more on wild cards (optional) see Java 
Generics and Collections at Safari Books on-
line, or 
http://www.devarticles.com/c/a/Java/Wildc
ards-and-Generic-Methods-in-Java/

public static <T extends Comparable<? super T>> T min (T[] a) {
T smallest = a[0];
for (int i=1; i<a.length; i++)

if (smallest.compareTo(a[i]) > 0)
smallest = a[i];

return smallest;
}

http://www.devarticles.com/c/a/Java/Wildcards-and-Generic-Methods-in-Java/
http://www.devarticles.com/c/a/Java/Wildcards-and-Generic-Methods-in-Java/


Sort example from other 
languages
The difficulty of doing the 
same thing in Java



How would we write compareTo() for a Rectangle 
class?  What would be the basis for comparison?

There is more than one natural way to compare 
Rectangles!

What if I don’t want to commit to any particular 
method?

It would be nice to be able to create and pass 
comparison methods to other methods …



We'd like to be able to pass a method as an argument to 
another method. (what is the role of arguments to 
methods in general?)
◦ This is not a new or unusual idea.
◦ You pass other functions as arguments to Maple's plot

and solve functions all of the time (on a later slide).
◦ C and C++ provide  qsort, whose first argument is a 

comparison function.
◦ Scheme has a sort function, which can take a function 

as its first argument.
Chez Scheme Version 7.4
Copyright (c) 1985-2007 Cadence Research Systems
> (sort > '(7 3 9 -2 5 -6 0 4 1 -8))
(9 7 5 4 3 1 0 -2 -6 -8)
> (sort (lambda (x y) (< (abs x) (abs y))) 

'(7 3 9 -2 5 -6 0 4 1 -8))
(0 1 -2 3 4 5 -6 7 -8 9) Q1



>>> list = [4, -2, 6, -1, 3, 5, -7]
>>> list.sort()
>>> list
[-7, -2, -1, 3, 4, 5, 6]
>>> def comp (a, b):

return abs(a) - abs (b)

>>> list.sort(comp)
>>> list
[-1, -2, 3, 4, 5, 6, -7]

The comp
function is 
passed as an 
argument to 
the sort
method.



Q2





What's it all about?
Java (unlike Scheme, Maple, Python, C ) does NOT allow 
methods to be passed as arguments.
We say that functions are first-class data in Scheme, 
Python, and Maple, but not in Java.

More about first-class data in CSSE 304.
But in Java, we can approximate "methods as 
parameters" by creating objects whose sole purpose is 
to provide a function for use by a method.  They are 
called function objects, a.k.a. functors.

The standard example: 
java.util.Comparator



The ability to pass functions as arguments to other 
functions can enable us to write code that is more flexible 
and generic
Example that we examined in several different languages:
◦ Pass a (built-in or user-defined) comparison function as one of 

the arguments to a sort function
Unfortunately, Java (unlike C++) doesn't allow functions to 
be passed as arguments
But we can create objects whose whole purpose is to pass 
a function into a method.  They are called function objects, 
a.k.a. functors.
For a (somewhat advanced, but worth skimming to get its 
flavor) overview of function objects in different languages:
◦ http://en.wikipedia.org/wiki/Function_object
Primary built-in Java example interface: Comparator

http://en.wikipedia.org/wiki/Function_object


java.util.Comparator<T>

How does compare() differ 
from compareTo()?





The 
SimpleRectangle
class does  not
implement 
Comparable, 
because there is 
not a single 
"natural" way to 
order 
SimpleRectangle
objects.

// Example class for use with  Comparators.
// by Mark Allen Weiss, modified by Claude Anderson

public class SimpleRectangle {
private int length, width;

public SimpleRectangle(int len, int wid) {
length = len; width = wid;

}

public int getLength( ) { return length; }

public int getWidth( ) { return width; }

public String toString( ){
return "Rectangle " +
getLength( ) + " by " +
getWidth( );

} 
}

Q3



public class CompareTest {
public static <AnyType> AnyType findMax( AnyType [ ] a,

Comparator<AnyType> cmp ) {
int maxIndex = 0;
for( int i = 1; i < a.length; i++ )
if( cmp.compare( a[ i ], a[ maxIndex ] ) > 0 )
maxIndex = i;

return a[ maxIndex ];
}

public static void main( String [ ] args ) {
SimpleRectangle [ ] rects = new SimpleRectangle[ 4 ];
rects[ 0 ] = new SimpleRectangle( 1, 10 );
rects[ 1 ] = new SimpleRectangle( 20, 1 );
rects[ 2 ] = new SimpleRectangle( 4, 6 );
rects[ 3 ] = new SimpleRectangle( 5, 5 );

System.out.println( "MAX WIDTH: "
+ findMax( rects, new OrderRectByWidth( ) ) );

System.out.println( "MAX AREA: "
+ findMax( rects, new OrderRectByArea( ) ) );

}
}

Note that java.util.Collections.max has the  
functionality of this findMax method.

vs. a[i].compareTo(a[maxIndex])

Without something 
like Comparator, we 
would need separate 
findMax functions 
for finding the max 
using different 
comparison criteria

Construct Comparator 
objects, pass them to 
findMax



class OrderRectByArea implements
Comparator<SimpleRectangle> {

public int compare(SimpleRectangle r1,
SimpleRectangle r2){

return r1.getWidth( ) * r1.getLength( )
- r2.getWidth( ) * r2.getLength( );

}
}

class OrderRectByWidth implements
Comparator<SimpleRectangle>{

public int compare(SimpleRectangle r1,
SimpleRectangle r2){

return( r1.getWidth() - r2.getWidth() );
}

}

Two 
Comparator 
classes





You can (and should) talk to your neighbors, the student assistants, 
and me, but you should submit your own work
Starting code is in today's project
It includes JUnit tests that you should get to run successfully.
The second paramater of countMatches is a function object that 
returns a boolean value
EqualsZero and EqualsK implement the Matchable interface 
Unit tests should help you discern the interface
Analogy with our Rectangle example:
◦ countMatches (corresponds to findMax in the example) is the method 

that takes an array and a function object as parameters
◦ EqualsZero (corresponds to OrderRectsByWidth) is a specific "function 

object" class
◦ Matchable (corresponds to Comparator) is the function object 

interface; you get to pick the name for its method.


	CSSE 220 Day 23
	Questions
	Apply this limit property to the following pairs of functions
	Generic Methods
	Generic methods: the need
	Generic method: simple solution
	Generic method: type constraint
	Generic method: fix the warning
	Generic method: more generally
	Intro to Function Objects
	Limitations of Comparable!
	Function Objects (a.k.a. Functors)
	Similar example in Python
	Similar example in Maple
	More Maple functions as parameters
	Java Function Objects
	Function objects – summary so far
	A built-in Function Object interface
	How to pronounce Comparator, Comparable
	Example: Rectangles
	FindMax Uses a  Comparator object
	The Function Object Classes
	Examples: Arrays and Collections 
	Count Matches Exercise 

