CSSE 220 Day 22

Generics and Comparable
Analysis of Algorithms intro
Function Objects intro

Nothing new to check out from SVN today

Exam contents

» Exam will NOT include Chapter 14.

- Except for the intro to analysis and big-oh which we
will cover today.

- | want to give you more time for the ideas to sink in.
- Also | want to do a couple of other things before we
get to the heart of chapter 14.

» The Computer part of the exam will not ask
you to do any GUI programming.

> There most likely will be GUI programming on the
Final exam.
- Likely things for you to do for Exam 2 Computer part:

- Algorithms, recursion, classes, interfaces, inheritance,
abstract classes, ArrayLists and Arrays.

VectorGraphics and Exam 2

» On the Written part, | may ask something
about how your team did some particular
aspect of the project

- As a way of checking to make sure that everyone
understands everything you did for the project

» Do you have questions about the exam ?

Generic Types and Collections
» Before Java 1.5 (still supported, but gives warnings):

ArravList a = new ArravList(); Explicit class cast
Integer b = new Integer(7); required.
a.add(b); /

Integer < = (Integer) (a.getil));

» New version (using Java generic type):

Implicit creation of Integer

; <Integer>is a “type argument”
for 7 - :
wrapper for 7 (auto-boxing) to the declaration of ag.
;;?E?Listilnteger} ag = new ArrayList<Integer>();
ag.add(7);

F/ automatic wrapping of int.

int og = ag.geti0); // auto unwrapping of Integer.
I No class cast

automatic unboxing: _ _required. _ _
Integer=int. Efficiency: Compile time
WA vs run-time checking QI-2

Comparable review:

» interface java.lang.Comparable<T>

» Type Parameters: T - the type of objects that
this object may be compared to

» 1Nt compareTo(T other)
- Compares this object with the specified object for
ordering purposes.
- Returns a negative integer, zero, or a positive

integer as this object is less than, equal to, or
greater than the specified object.

compareTo: the fine print

int compareTo(I o) from the JDK APl documentation

Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer
as this object is less than, equal to, or greater than the specified object.

The i:l:l:l‘plEﬂ:lE;ntDr must enswre sgn (x.compareTo(y)) == -sgn(yv.compareTo(x)) for all = and V. mﬁi
implies that x . compareTo (v) must throw an exception iff v.compareTeo (x) throws an exception.)

The mplementor must also ensure that the relation is transitive: (x.compareTo(v) >0 && v.compareTo(z)
>0) implies x. compareTo (z) >0.

Fina]l‘_‘_-’: the implementnr must ensure that x. compareTo (v)==0 i:l:l:rp]iEE that sgn (%.compareTo(z)) ==
sgnly.comparelo(z)). for all =

It is strongly recommended, but nor strictly required that (x.compareTo(v)==0) == (x.equals(y)).
Generally speaking, any class that immplements the Comparable interface and violates this condition should
clearly indicate this fact. The recommended language is "INote: this class has a natural ordering that is
inconsistent with equals "

In the foregomng description, the notation sgn (expression) designates the mathematical sigrom function,
which is defined to return one of -1, 0, or 1 according to whether the value of expression is negative, zero or
positive.

java.lang

Interface Comparable<T>

Tvpe Parameters:

T - the type of objects that this object may be compared to

» Any class that implements Comparable contracts to provide a
compareTo() method

Method Detail

compareTo Stringis a Comparable class.

If it did not already have a compareTo()
method, how would you write it?

int compareTo (Il o)

Compares this object with the specified object for order. Returns a negative integer, zero_ or a
positive integer as this object is less than_ equal to, or greater than the specified object.

» Therefore, we can write generic methods on Comparable
objects. For example, in the java.util_Arrays class:

=tatic void

sort (Cbject[] a, int fromIndex, int tolndex)

Sorts the specified range of the specified array of objects into ascending order,
according to the natural ordering of its elements.

N — Q3

Example of using Arrays.sort

import java.util_Arrays;
public class StringSort {

public static void main(String[] args) {
String [] toons = {"Mickey", "Minnie", 'Donald",
"Pluto", "Goofy"};
Arrays.sort(toons);

for (String s:toqns) _ Output:

b [otiectione cort o] |0l
1 ol - Gooty

similarly be used to sort Mickey

ArrayLists and other Minnie
Collection objects. Pluto

Measuring program effciency

» What kinds of things should we measure?
> CPU time
> memory used
> disk transfers
- network bandwidth

» Mostly in this course, we focus on the first
two, and especially on CPU time

» To measure running time, we can call
System.currentTimeMillis()

Program Efficiency, part 2

» Some simple efficiency tips

- If a statement in a loop calculates the same value
each time through, move it outside (usually
before) the loop

- Store and retain data on a “need to know” basis
- Don’t store values that you won'’t reuse
- Do store values that you need to reuse

- Don’t put everything into an array when you only
need one or two consecutive items at a time

- Don’t declare a variable as a field if it can be a
local variable of a method

Q4

Familiar example:
Linear search of a sorted array of Comparable items

for (int 1=0; 1 < a.length; 1++)
1T (a[1].compareTo(soughtltem) > 0)

return NOT_FOUND; // perhaps NOT FOUND == -1
else 1Tt (a[1]-compareTo(soughtltem) == 0)
return 1,

return NOT _FOUND;

*\What should we count?
*Best case, worst case, average case?

Q5

Another algorithm analysis example

Does the following method actually create and return a copy of the
string s?
What can we say about the running time of the method?
(where N is the length of the string s)
What should we count?

public static String strlngCopy(Strlng s) {
String result = """
for (int 1=0; 1I<s. Iength() 1++)
result += s._.charAt(1);
return result;

} Don’t betoo quick to make assumptions
when analyzing an algorithm!

How can we do the copy more efficiently?
AN Q6

Interlude

» Always code as if the guy who
ends up maintaining your code
will be a violent psychopath
who knows where you live.

--Martin Golding

Figure 5.1

Running times for small inputs

10 I T I
Linear
O(Nlog N)
8r Quadratic 7
Cubic

Running Time (milliseconds)

0 | | ! | | | | ! |
20 30 40 b0 60 70 80 90 100

Input Size (N)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Figure 5.2

Running times for moderate inputs

Running Time (seconds)

0.8

0.6

0.4

0.2

Linear

O(Nlog N)
Quadratic

Cubic

t i [I

1000

2000

3000 4000 5000 6000
Input Size (N)

7000 8000

9000 10000

Data Structures & Problem Solving using JAVA/2E

Mark Allen Weiss

© 2002 Addison Wesley

Figure 5.3

Functions in order of increasing growth rate

FUNCTION NAME

Iy Constant

log N Logarithmic

log2N Log-squared

N Linear

NlogN M log N a.k.a "log linear"
N? Quadratic

N7 Cubic

2N Exponential

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Asymptotic analysis

» We only really care what happens when N
(the size of a problem) gets large

» Is the function basically linear, quadratic,
etc. ?

» For example, when n is large, the difference
between n? and n? - 3 is negligible

* The “Big-Oh™ Notation
- given functions f{n) and g(»n), we say that
f{n)1s O(g(n)) if and only 1f
fin) < c g(n) for n=n

In this course,

we won't be so - ¢ and ng are constants, f{#n) and g(n) are functions
formal . We'll over non-negative integers
just say that

f(N) is O(g(N)
means that f(n)
is eventually
smaller than a
constant times

g(n).

cefny

Funning Time

Q7

Input Size

« Simple Rule: Drop lower order terms and constant
factors.

- Tn-31s O(n)
- SI?EIDg n+ 5%+ nis G{;?Elﬂg n)

» Special classes of algorithms:

- logarithmic: O(log n)

- linear O(n)

- quadratic ﬂ{}?z}

- polynomial O(n*), k> 1
- exponential O(a™"y., n= 1

« “Relatives™ of the Big-Oh
I —Q(f{n)): Big Omega
— O(f(n)): Big Theta

T

Recap: O, Q, ©

» f(N) is O(g(N)) if there is a constant ¢ such
that for sufficiently large N, f(N) < cg(N)
- Informally, as N gets large the growth rate of f is
bounded above by the growth rate of g
» T(N) is Q(g(N)) if there is a constant ¢ such
that for sufficiently large N, f(N) > cg(N)
- Informally, as N gets large the growth rate of f is
bounded below by the growth rate of g
» f(N) is ©(g(N)) if f(N) is O(g(n)) and f(N) is Q(g(N))

» Informally, as N gets large the growth rate of f is the
same as the growth rate of g

Limits and asymptotics

consider the limit I im f (r)

N—> 00 g(n)

What does it say about asymptotics if this limit is
zero, nonzero, infinite?

We could say that knowing the limit is a sufficient

but not necessary condition for recognizing big-oh
relationships.

It will be all we need for all examples in this course.

Q38

Apply this limit property to the
following pairs of functions

N and N2

N2 + 3N + 2 and N?

N + sin(N) and N

log N and N

N log N and N

N2 and N"

aN and bN (a < b)

log,N and log,N (a < b)
N! and NN

© e N o s Y

Q9

Big-Oh Style

» Give tightest bound you can

- Saying that 3N+2 is O(N3) is true, but not as useful as
saying it’s O(N) [What about ©(N3) ?]

» Simplify:
> You could say:
> 3n+2 is O(5n-3log(n) + 17)
- and it would be technically correct...
> |t would also be poor taste ... and put me in a bad mood.

» But... if | ask “true or false: 3n+2 is O(n3)”,
what’s the answer?
o True!

> There may be “trick” questions like this on assignments and
exams.

- But they aren’t really tricks, just following the big-Oh
~definition!

	CSSE 220 Day 22
	Exam contents
	VectorGraphics and Exam 2
	Questions
	Generic types and Collections
	Generic Types and Collections
	Comparable review:
	compareTo: the fine print
	Slide Number 10
	Example of using Arrays.sort
	Measuring program efficiency
	Measuring program effciency
	Program Efficiency, part 2
	Familiar example: �Linear search of a sorted array of Comparable items
	Another algorithm analysis example
	Break
	Interlude
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Asymptotic analysis
	Slide Number 23
	Slide Number 24
	Recap: O, Ω, Θ
	Limits and asymptotics
	Apply this limit property to the following pairs of functions
	Big-Oh Style
	Work Time

