
Object-Oriented Design

No SVN checkout today

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Software
Development

Standardized approaches intended to:
◦ Reduce costs
◦ Increase predictability of results

Examples:
◦ Waterfall model
◦ Spiral model
◦ “Rational Unified Process”

Do each stage to completion
Then do the next stage

Pipe dream model?

Analysis

Design

Implementation

Testing

Deployment

Repeat phases in a cycle
Produce a prototype at end of each cycle
Get early feedback, incorporate changes

Schedule overruns
Scope creep

Deployment

Prototype

Like the spiral model with very short cycles

Pioneered by Kent Beck

One of several “agile” methodologies, focused
on building high quality software quickly

Rather than focus on rigid process, XP
espouses 12 key practices…

Realistic planning

Small releases

Shared metaphors

Simplicity

Testing

Refactoring

Pair programming

Collective ownership

Continuous integration

40-hour week

On-site customer

Coding standards
When you see

opportunity to make
code better, do it

Use descriptive
names Q1

A practical technique

We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses
We will practice a common object-oriented
design technique using CRC Cards
Like any design technique,
the key to success is practice

1. Discover classes based on
requirements

2. Determine responsibilities of
each class

3. Describe relationships between
classes

Q2

Brainstorm a list of possible classes
◦ Anything that might work
◦ No squashing
Prompts:
◦ Look for nouns
◦ Multiple objects are often created from each class

so look for plural concepts
◦ Consider how much detail a concept requires:

A lot? Probably a class
Not much? Perhaps a primitive type

Don’t expect to find them all add as needed

Tired of hearing this yet?

Look for verbs in the requirements to identify
responsibilities of your system

Which class handles the responsibility?

Can use CRC Cards to discover this:
◦ Classes
◦ Responsibilities
◦ Collaborators

Use one index card per class

Class name

CollaboratorsResponsibilities

Q3

1. Pick a responsibility of the program
2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?

◦ Yes Return to step 1
◦ No

Decide which classes should help
List them as collaborators on the first card
Add additional responsibilities to the collaborators’
cards

Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards
Use a “token” to keep your place
◦ A quarter or a magnet
Focus on high-level responsibilities
◦ Some say < 3 per card
Keep it informal
◦ Rewrite cards if they get to sloppy
◦ Tear up mistakes
◦ Shuffle cards around to keep “friends” together

Classes usually are related to their
collaborators
Draw a UML class diagram showing how
Common relationships:
◦ Inheritance: only when subclass is a special case
◦ Aggregation: when one class has a field that

references another class
◦ Dependency: like aggregation but transient, usually

for method parameters, “has a” temporarily
◦ Association: any other relationship, can label the

arrow, e.g., constructs

NEW!

Q4

Finish BallWorlds by Friday at 2 PM.
Do Appointment Calendar design exercise
before Monday's class
◦ Work with one, two, or three people (from either

CSSE 220 section) if you wish
◦ You will need a few index cards.

If you need to buy them from the Rose-Hulman
bookstore, you will need to do so by Friday at 4:30 PM.
If you forget, find someone else who remembered!

Pay them for the cards. (Cards should be going at about
$1.00 each by Sunday at midnight!)

◦ Use Violet for drawing your diagrams
Instructions for installing it are at
http://www.rose-hulman.edu/class/csse/resources/

http://www.rose-hulman.edu/class/csse/resources/

Ask questions if you’re stuck!

	CSSE 220 Day 18
	Questions?
	Software�Development�Methods
	Software Life Cycle
	Formal Development Processes
	Waterfall Model
	Spiral Model
	Extreme Programming—XP
	The XP Practices
	Object-Oriented Design
	Object-Oriented Design
	Key Steps in Our Design Process
	Discover Classes�Based on Requirements
	Determine Responsibilities
	CRC Cards
	CRC Card Technique
	CRC Card Tips
	Describe the Relationships
	Summary of �UML Class Diagram Arrows
	Homework 18
	BallWorlds Work Time

