CSSE 220 Day 16

Object: the superest class of all
Inheritance and text in GUIs

Check out CloneAndText from SVN

Questions

- Interfe

e Inheri

» extends
 abstract
 polymorphi

e Hardy's taxi
sanything else

Object

» Every class in Java inherits from Object

- Directly and explicitly:
« public class String extends Object {..}

- Directly and implicitly:
- class BankAccount {..}

> Indirectly:
- class SavingsAccount extends BankAccount {..}

Ql

Object Provides Several Methods

» String tOStr'-ing()7= Often overridden

» boolean equals(Object otherObject)

» Class getClass()

» Object clone()

x
T Often useful
- \— Often dangerous!

Q2

Overriding toString()

» Return a concise, human-readable summary
of the object state

» Very useful because it’s called automatically:
- During string concatenation
> For printing
> In the debugger

» getClass() .getName() comes in handy
here...

Overriding equals(Object o)

» Should return true when comparing two
objects of same type with same “meaning’

> Must check types—use instanceof
- Must compare state—use cast

» Example: Similar to what did in Fraction:

@Override
public boolean equals(Object obj) {
// First, check type of other object
iIT (1(obj i1nstanceof SafeDepositBox))
return false;
// Next, cast the other object so we can get at the fields
SafeDepositBox otherBox = (SafeDepositBox) obj;
// Finally, compare all instance fields using == for
// primitives, equals method for objects.
return this.boxNumber == otherBox.boxNumber ;

The Reason for clone()

» Avoiding representation exposure:

> i.e. returning an object that lets other code change
our object’s state

public class Customer {
private String name;
private BankAccount acct;

public String getName() {
return this.name; // € 0OK!

tAccount() {
// € Rep. exposure!

Book says (controversiallly) to use
return (BankAccount) this.acct.clone();” Q3.4

The Trouble with clone()

» clone() is supposed to make a deep copy
1. Copy the object
2. Copy any mutable objects it points to

» Object’s clone() handles 1 but not 2

» Effective Java includes a seven page

description on overriding clone():

> “[You] are probably better off providing some
alternative means of object copying or simply not
providing the capability.”

Effectil;e_/ava, by Joshua Block Q5,6

Alternatives to clone()

» Copy constructor in Customer:
o public Customer(Customer toBeCopied) {..}

» Copy factory in BankAccount:
- public abstract BankAccount getCopy();

» Fixed Example:

o public BankAccount getAccount() {
return this.acct.getCopy(Q);

Add method stub to BankAccount

» Note that doing this changes BankAccount
into an abstract class:

/**

* @return a deep copy of this account
*/

public abstract BankAccount getCopy();

Fix representation exposure:

public Customer(String name, BankAccount
account) {
this.name = name;
// 6: TIX representation exposure
// this_account = account;
this.account = account.getCopy(Q);

}

public BankAccount getAccount() {
// 7-. TIX representation exposure
// return this.account;
return this.account.getCopy();

Add a copy constructor

/**
* Constructs a deep copy of the given
* customer object.
* @param toBeCopied
*/
public Customer(Customer toBeCopied) {
this.name = toBeCopied.name;
this.account = toBeCopied.account.getCopy();

L/

refers to ance fields of the

enclosing class.

	CSSE 220 Day 16
	Questions?
	I, Object
	Object
	Object Provides Several Methods
	Overriding toString()
	Overriding equals(Object o)
	The Reason for clone()
	The Trouble with clone()
	Alternatives to clone()
	Add method stub to BankAccount
	Fix representation exposure:
	Add a copy constructor
	Better Frames�Through Inheritance
	BallWorlds

