
Inheritance
Polymorphism

Abstract Classes

Check out Inheritance from SVN

Sometimes a new class is a
special case of the concept
represented by another
Can “borrow” from an existing
class, changing just what we
need
The new class inherits from
the existing one:
◦ all methods
◦ all instance fields
Can add new fields/methods
Or override existing methods

Q1

class SavingsAccount extends BankAccount
◦ adds interest earning, while keeping other traits

class Employee extends Person
◦ adds pay info. and methods, keeps other traits

class Manager extends Employee
◦ adds info. about employees managed, changes pay

mechanism, keeps other traits

class SavingsAccount extends BankAccount {
// added fields
// added methods

}

Say “SavingsAccount is a BankAccount”

Superclass: BankAccount

Subclass: SavingsAccount

Q2

A Sophomore IS-A Student IS-A Person.
A Continent IS-A LandMass
An HPCompaqNW8440 IS-A Laptop Computer
An iPod IS-A MP3Player
A Square IS-A Rectangle

It is not true that a Continent IS-A Country or
vice-versa.
Instead, we say that a Continent HAS-A Country.

Q3

String extends Object
ArrayList extends AbstractCollection
IOException extends Exception
BigInteger extends Number
BufferedReader extends Reader
JButton extends Component
MouseListener extends EventListener
Frame extends Window

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

Q4

class ClickHandler implements MouseListener

◦ ClickHandler promises to implement all the
methods of MouseListener

class CheckingAccount extends BankAccount

◦ CheckingAccount inherits (or overrides) all the
methods of BankAccount

For client code
reuse

For
implementation

code reuse

Still more
subclasses of
JComponent:

JColorChooser
JComboBox

JFileChooser
JList

JMenuBar
JProgressBar

JSrollBar
JScrollPane

JSLider
JSplitPAne

JTabbedPane
JTable
JTree

Going up (in the hierarchy)!
JComponent extends Container

Container extends Component
Component extends Object

Inherit methods unchanged
No additional code needed in subclass

Override methods
◦ Declare a new method with same signature to use

instead of superclass method

Partially Override methods
◦ call super.sameMethod(), and also add some other code.

Add entirely new methods not in superclass

Q5

ALWAYS inherit all fields unchanged

Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

Q6

Calling superclass method:
◦ super.methodName(args);

Calling superclass constructor:
◦ super(args);

Must be the first
line of the subclass

constructor

Q7

A subclass instance is a superclass instance
◦ Polymorphism still works!
◦ BankAccount ba = new SavingsAccount();
ba.deposit(100);

But not the other way around!
◦ SavingsAccount sa = new BankAccount();
sa.addInterest();

Why not? BOOM!

For client code reuse

Q8

Can use:
◦ public void transfer(double amt, BankAccount o){

withdraw(amount);
o.deposit(amount);

}
in BankAccount

To transfer between different accounts:
◦ SavingsAccount sa = …;
◦ CheckingAccount ca = …;
◦ sa.transfer(100, ca);

Halfway between superclasses and interfaces
◦ Like regular superclass:

Provide implementation of some methods
◦ Like interfaces

Just provide signatures and docs of other methods
Can’t be instantiated

Example:
◦ public abstract class BankAccount {

/** documentation here */
public abstract void deductFees();
…

}

Elided methods as before

Review
◦ public—any code can see it
◦ private—only the class itself can see it

Others
◦ default (i.e., no modifier)—only code

in the same package can see it
good choice for classes

◦ protected—like default, but
subclasses also have access

sometimes useful for helper methods

Bad
for

fields!

Q8

Shape Hierarchy
From Weiss: Data Structures
and Problem Solving Using
Java
Code is in Today's project

Figure 4.10
The hierarchy of shapes used in an inheritance example

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Actually, we
can (and
will) do
better,
making
Shape be an
interface.

Note that we can
use area and
perimeter in
the definitions
of compareTo
and
semiperimeter,
even though the
former are not
implemented in
this class.

compareTo is not
required to return
these specific values.
Why does Weiss do it
this way?

implements the
abstract methods

overrides a
method from the
Object class

implements the
abstract methods

overrides a
method from the
Object class

Methods unique
to this class

Square inherits almost all of its
functionality from Rectangle.

The roots of the word polymorphism:
◦ poly:
◦ morph:
Why is this an appropriate name for this
concept?
How do you implement code that uses
polymorphism?

dynamic binding of method calls
to actual methods.

The class of the actual object is
used to determine which class's

method to use.
We'll see it in the ShapesDemo

code.

If we don’t test for
null, we could get a
NullPointerException.

How do we see
polymorphism
in action here?

Why are these methods static?

Note the implicit,
polymorphic call to
toString()

Output:

Interfaces
Inheritance
Abstract Classes
Polymorphism

	CSSE 220 Day 15
	Questions?
	Inheritance
	Code Examples
	Notation and Terminology
	Other natural examples
	Examples From the Java API Classes
	Inheritance in UML
	Interfaces vs. Inheritance
	Inheritance Run Amok?
	With Methods, Subclasses can:
	With Fields, Subclasses:
	Super Calls
	Polymorphism and Subclasses
	Another Example
	Abstract Classes
	Access Modifiers
	Inheritance and Abstract Class Example
	Shape Hierarchy
	The Shape Interface
	AbstractShape class definition
	Circle class definition
	Rectangle class definition
	Square class definition
	Polymorphism
	Polymorphism is possible because of ...
	Shape demo part 1
	Shape demo part 2
	More on these topics later
	Hardy's Taxi intro

