
Fundamental Data Types, Constants,
Console Input, More Text Formatting,

Decisions

Check out TypesAndDecisions from SVN

Primitive types, conversions and casts
Defining constants
Convert numbers to and from Strings
Reading input with a Scanner object
Formatting with format and printf
Quick review of if statements
== vs. equals()
Selection operator, ? :
switch and enumerations
and a partridge in a pear tree

Now posted:
◦ HW2: ObjectsAndMethods
◦ Comments are in ANGEL
◦ HW3: JavadocsAndUnitTesting

Right-click and choose Team Update
Look in Task view for:
◦ CONSIDER
◦ POINTS

Table from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

Consider:
◦ int i = 10;
double d = 20.1;
double e = i; // OK
int j = d; // ERROR!

Why the difference?
Add a cast to tell Java that we understand
their could be a problem here:
◦ int j = (int) d; // OK
But what happens to the fractional part of d?

Q1,2

Look at RoundAndRound.java
◦ What does it do?
Run it and try some different numbers, like:
◦ 1.004
◦ 1.005
◦ 1.006
◦ -1.006
◦ 4.35
Zoinks! What’s up with the last one?

Q3

BigInteger for arbitrary size integer data
BigDecimal for arbitrary precision floating
point data

See the Java API documentation for these
classes.
Space and time issues

Constants let us avoid Magic Numbers
◦ Hardcoded values within more complex expressions
Example:

final double relativeEyeOutset = 0.2;
final double relativeEyeSize = 0.28;
final double faceRadius = this.diameter / 2.0;
final double faceCenterX = this.x + faceRadius;
final double eyeDiameter = relativeEyeSize * this.diameter;
final double eyeRadius = eyeDiameter / 2.0;
double eyeCenterX =

faceCenterX - relativeEyeOutset * this.diameter;
Ellipse2D.Double eye =

new Ellipse2D.Double(eyeCenterX - eyeRadius,
eyeCenterY - eyeRadius,
eyeDiameter, eyeDiameter);

graphics.fill(eye);
Q4,5

We’ve also seen constant fields in classes:
◦ public static final int FRAME_WIDTH = 800;

Why put constants in the class instead of a
method?

Q6

Already looked at some String methods
Can also use + for string concatenation
Quiz question:
◦ Look at StringFoo.java
◦ Based on the four uses of + in main(), can you

figure out how Java decides whether to do string
concatenation or numeric addition?

Q7

Saw these in Circle of Circles:
◦ double Double.parseDouble(String n)
◦ int Integer.parseInteger(String n)
Can also convert numbers to strings:
◦ String Double.toString(double d)
◦ String Integer.toString(int i)
Or an easier way:
◦ "" + d
◦ "" + i

Open StringFoo.java
Uncomment the last line of main():
◦ StringFoo.helper();
Run it
What happened?

Exception in thread "main"
java.lang.NumberFormatException: For input string:
"42.1”

at
java.lang.NumberFormatException.forInputString(NumberFor
matException.java:48)

at java.lang.Integer.parseInt(Integer.java:456)
at java.lang.Integer.parseInt(Integer.java:497)
at StringFoo.helper(StringFoo.java:34)
at StringFoo.main(StringFoo.java:26)

The first line will usually give you
a hint about what went wrong.

The first line of your code listed
will give you a clue where to look.

In Python:
◦ "This is a string"
◦ 'and so is this'
In Java:
◦ "This is a string"
◦ This is a character: 'R'
◦ 'This is an error'

Can (usually*) use charAt(index)
Example:
String message = "Rose-Hulman";
for (int i=0; i < message.length(); i++) {
System.out.println(message.charAt(i));

}

charAt() returns a 16-bit char value
Exercise: Work on TODO items in
StringsAndChars.java

* Unfortunately there are more than 216 (65536) symbols
in the known written languages. See Character API

docs for the sordid details.

Creating a Scanner object:
◦ Scanner inputScanner =

new Scanner(System.in)
Defines methods to read from keyboard:
◦ inputScanner.nextInt()
◦ inputScanner.nextDouble()
◦ inputScanner.nextLine()
◦ inputScanner.next()
Exercise: Look at ScannerExample.java
◦ Add println’s to the code to prompt the user for

the values to be entered

Tables from Horstmann, Big Java (3e), John Wiley
& Sons, Copyright 2007

More options than in
C. I used a couple in
today’s examples.
Can you find them?

Printing:
◦ System.out.printf("%5.2f%n", Math.PI)
Formatting strings without printing:
◦ String message = String.format("%5.2f%n",

Math.PI)
Display dialog box messages
◦ JOptionPane.showMessageDialog(null,

message)

int letterCount = 0;
int upperCaseCount = 0;
String switchedCase = "";
for (int i = 0; i < message.length(); i++) {

char nextChar = message.charAt(i);
if (Character.isLetter(nextChar)) {

letterCount++;
}
if (Character.isUpperCase(nextChar)) {

upperCaseCount++;
switchedCase += Character.toLowerCase(nextChar);

} else if (Character.isLowerCase(nextChar)){
switchedCase += Character.toUpperCase(nextChar);

} else {
switchedCase += nextChar;

}
}

Exercise: EmailValidator.java
◦ Use a Scanner object
◦ Prompt for user’s email address
◦ Prompt for it again
◦ Compare the two entries and report whether or not

they match

Notice anything strange?

In Java:
◦ oneObject == otherObject compares references
◦ oneObject.equals(oneObject) compares

objects

Remember: variables of object types store
reference values

How should you compare the email addresses
in the exercise?

Q8

Statements: used only for their side effects
◦ Changes they make to stored values or control flow
Expressions: calculate values

Many statements contain expressions:
◦ if (amount <= balance) {

balance = balance – amount;
} else {
balance = balance – OVERDRAFT_FEE;

}

Let’s us choose between two possible values
for an expression
Example:
◦ balance = balance –

(amount <= balance) ?
amount : OVERDRAFT_FEE

Also called the “ternary” operator (Why?)

Q9

char grade = …
int points;
switch (grade) {
case ‘A’:

points = 95;
break;

case ‘B’:
points = 85;
break;

…
default:

points = 0;
}

Can switch on
integer, character,

or “enumerated
constant”

Don’t forget the
breaks!

Q10

Let us specify
named sets of
values:
public enum Suit {

CLUBS,
SPADES,
DIAMONDS,
HEARTS

}

Then switch on them:
public String colorOf(Suit s) {

switch (s) {
case CLUBS:
case SPADES:

return “black”;
default:

return “red”;
}

}

public class TryEnums {

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRIDAY, SATURDAY

}

public static void main(String[] args) {
Day d = Day.SUNDAY;
System.out.println(d);
System.out.println(Day.MONDAY.ordinal());
for (Day d2 : Day.values())

System.out.print(d2 + " ");
System.out.println();

}
} Output:

SUNDAY
1
SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

Comparison operators: <, <=, >, >=, !=, ==

Comparing objects: equals(), compareTo()

Boolean operators:

◦ and: &&

◦ or: ||

◦ not: !

Q11

A common pattern in Java:
public boolean isFoo() {

… // return true or false depending on
// the Foo-ness of this object

}

We tested and implemented isWholeNumber
in the Fraction class

Q12

Black box testing: testing without regard to
internal structure of program
◦ For example, user testing
White box testing: writing tests based on
knowledge of how code is implemented
◦ For example, unit testing
Test coverage: the percentage of the source
code executed by all the tests taken together
◦ Want high test coverage
◦ Low test coverage can happen when we miss

branches of switch or if statements

Q6

If, by some miracle, we still
have time left:
Begin to create a CubicPlot
class as described in HW6

	CSSE 220 Day 6
	Questions?
	Today: lots of small topics
	View Grader Comments in Eclipse
	Primitive Types (again)
	Conversions and Casts
	Example
	When Nine Quintillion Isn’t Enough
	Constants in Methods
	Constants in Classes
	Strings in Java
	Converting Strings to Numbers
	Conversions Gone Awry
	Reading Exception Traces
	char type in Java is like in C
	Iterating Over a String in Java
	Reading Console Input with java.util.Scanner
	Formatting with�printf and format
	Formatting with�printf and format
	If Statements in a Nutshell
	Comparing Objects
	Comparing Objects
	Statement vs. Expressions
	Selection Operator
	Switch Statements: Choosing Between Several Alternatives
	Enumerated Constants
	Another Enumeration Example
	Boolean Essentials—Like C
	Predicate Methods
	Test Coverage
	Exercise

