
Unit Tests
API Documentation
Object References

(Swing Preview)

Check out JavadocsAndUnitTesting from SVN

Primitive types?
Object/Class terminology?
Eclipse/Subclipse/etc.?
Syllabus/Course Policies?
Anything Else?

API Documentation,
Docs in Eclipse,
Writing your own Docs

What’s an API?
◦ Application Programming Interface

The Java API on-line
◦ Google for: java api documentation 6
◦ Or go to: http://java.sun.com/javase/6/docs/api/

Find the String class documentation:
◦ Click java.lang in the top-left pane
◦ Then click String in the bottom-left pane

Q1,2

http://java.sun.com/javase/6/docs/api/

Setting up Java API documentation in Eclipse
◦ Should be done already, but if the next steps don’t

work for you, we’ll fix that
Using the API documentation in Eclipse
◦ Hover text
◦ Open external documentation (Shift-F2)

Written in special comments: /** … */
Can come before:
◦ Class declarations
◦ Field declarations
◦ Method declarations
Eclipse is your friend!
◦ It will generate javadoc comments automatically
◦ It will notice when you start typing a javadoc

comment

/**
* This class demonstrates unit testing
* and asks you to use the Java API
* documentation to find methods to solve
* problems using Strings.
*
* @author Curt Clifton.
* Created Sep 9, 2008.
*/
public class MoreWordGames { … }

Description of
class

@author Tag
followed by author

name and date

/**
* Converts the original string to a
* string representing shouting.
*
* @param input the original string
* @return input in ALL UPPER CASE
*/
static String shout(String input) {

return input.toUpperCase();
}

Description of method,
usually starts with a verb.

@param tag
followed by
parameter
name and
(optional)

description.
Repeat for each

parameter.

@result tag followed by
description of result. Omit

for void methods.

Add javadoc comments to
MoreWordGames

Don’t try to memorize the Java libraries
◦ Nearly 9000 classes and packages!
◦ You’ll learn them over time

Get in the habit of writing the javadocs before
implementing the methods
◦ It will help you think before doing, a vital software

development skill
◦ This is called programming with documented stubs
◦ I’ll try to model this. If I don’t, call me on it!

Test-driven Development,
unit testing and JUnit

Writing code to test other code
Focused on testing individual pieces of code
(units) in isolation
◦ Individual methods
◦ Individual objects

Why would software engineers do unit
testing?

Q3,4

JUnit is a unit testing framework
◦ A framework is a collection of classes to be used in

another program
◦ Does much of the work for us!
JUnit was written by
◦ Erich Gamma
◦ Kent Beck
Open-source software
Now used by millions of Java developers

Q5

MoveTester in Big Java shows how to write
tests in plain Java
Look at JUnitMoveTester in today’s repository
◦ Shows the same test in JUnit
◦ Let’s look at the comments and code together…

Test “boundary conditions”
◦ Intersection points: -40℃ == -40℉
◦ Zero values: 0℃ == 32℉
◦ Empty strings
Test known values: 100℃ == 212℉
◦ But not too many
Tests things that might go wrong
◦ Unexpected user input: “zero” when 0 is expected
Vary things that are “important” to the code
◦ String length if method depends on it
◦ String case if method manipulates that

Walk through creating unit
tests for shout in
MoreWordGames
Test whisper and holleWerld

Differences between primitive
types and object types in Java

Variables of number type store values
Variables of class type store references
◦ A reference is like a pointer in C, except

Java keeps us from screwing up
No & and * to worry about
(and the people say, “Amen”)

Consider:
1. int x = 10;
2. int y = 20;
3. Rectangle box = new Rectangle(x,y,5,5);

Q6

Actual value for number types
Reference value for object types
◦ The actual object is not copied
◦ The reference value (“the pointer”) is copied
Consider:
1. int x = 10;
2. int y = x;
3. y = 20;

4. Rectangle box = new Rectangle(5,6,7,8);
5. Rectangle box2 = box;
6. box2.translate(4,4);

Q7-10

A substantial assignment
◦ Read chapters 3 and 4; do the Wikis
◦ Write JUnit Tests for Word Games
◦ Write and Test Two new methods in WordGames
◦ Write some Javadoc
◦ Write and test two simple static functions
◦ (On paper) Draw box-and-pointer diagrams for

given code snippets

◦ All except the last due 8:05 on Monday
◦ Written problems due at the beginning of class.
◦ Start early!

GUIs and Drawing

Q9,10

But did not allow the full power of the TKinter
graphics library on which it was built
Tradeoff:

simple powerful
to vs to

learn use
The former seemed to be the obvious choice
for 120
Swing is more at the level of Python's TKInter

AWT (Abstract Windowing Toolkit) (1995)
◦ The first Java GUI framework
◦ A bit "heavy and clunky"
◦ Still available, but seldom used
Swing (1998)
◦ Lighter-weight, more flexible and powerful
◦ Relies on AWT for some things
◦ We will use it.
◦ A great reference on Safari Books on-line:

Java Swing, 2nd Edition
See CSSE 220 Syllabus for access information

◦ SWT (2003?)
Developed by IBM for implementing Eclipse

Begin today, continue next time
Create a newEclipse Java Project called
FirstGraphics

	CSSE 220 Day 3
	Questions?
	Java Documentation
	Recap: Java API Documentation
	Java Documentation in Eclipse
	Writing Javadocs
	Example Javadoc for a Class
	Example Javadoc for a Method
	Exercise
	Javadocs: Key Points
	Writing Code to �Test Your Code
	Unit Testing
	Unit Testing With JUnit
	JUnit Example
	Interesting Tests
	Exercise
	Object References
	What Do Variables Really Store?
	Assignment Copies Values
	Homework
	Preview of Swing
	zellegraphics was simple to use
	Java GUI History
	First Graphics program

