
Sorting Wrap-up
Function Objects and the Comparator Interface

Linked Lists

Checkout LinkedList project from SVN

 We write f(n) = O(g(n)), and
say “f is big-Oh of g”

 if there exists positive constants c and n0 such that

 0 ≤ f(n) ≤ c g(n)
for all n > n0

 g is a ceiling on f

Q1

Shortcut: Take highest
order term in f and drop
the coefficient.

 Be able to describe basic sorting algorithms:
◦ Selection sort

◦ Insertion sort

◦ Merge sort

◦ Quicksort

 Know the run-time efficiency of each

 Know the best and worst case inputs for each

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Find the smallest number
in the unsorted part

◦ Move it to the end of the
sorted part (making the
sorted part bigger and the
unsorted part smaller)

Repeat until
unsorted part is
empty

Q2a

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first number in the
unsorted part

◦ Insert it into the correct
location in the sorted part,
moving larger values up to
make room

Repeat until
unsorted part is
empty

Q2b

 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted

◦ Otherwise:

 Divide list into two halves

 Recursively sort the two halves

 Merge the sorted halves back together

 Let’s profile it…

 Use a recurrence relation again:
◦ Let T(n) denote the worst-case number of array

access to sort an array of length n

◦ Assume n is a power of 2 again, n = 2m,
for some m

 Or use tree-based sketch…

Q3,2c

 Basic recursive idea:
◦ If length is 0 or 1, then it’s already sorted

◦ Otherwise:

 Pick a “pivot”

 Shuffle the items around so all those less than the
pivot are to its left and greater are
to its right

 Recursively sort the two “partitions”

 Let’s profile it…

 Using recurrence relation involves some
seriously heavy lifting
◦ See CSSE/MA 473

 But we can sketch the idea using trees…

Q2d

That's nothing. I once lost my genetics, rocketry,
and stripping licenses in a single incident.

Another way of creating
reusable code

 Java libraries provide efficient sorting
algorithms
◦ Arrays.sort(…) and Collections.sort(…)

 But suppose we want to sort by something
other than the “natural order” given by

compareTo()

 Function Objects to the rescue!

 Objects defined to just “wrap up” functions so
we can pass them to other (library) code

 We’ve been using these for awhile now
◦ Can you think where?

 For sorting we can create a function object
that implements Comparator

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 The main theme for the last 1/6 of the course

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

Q4

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

Q5,6

 void addFirst(E element)

 void addLast(E element)

 E getFirst()

 E getLast()

 E removeFirst()

 E removeLast()

 What about the middle of the list?

◦ LinkedList<E> implements Iterable<E>

Enhanced For Loop What Compiler Generates

for (String s : list) {

// do something

}

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

 Implementing ArrayList and LinkedList

 A tour of some data structures
◦ Including one that will come in handy for storing a

dictionary!

