
Decision Statements and Expressions

Check out Decisions from SVN





 Quick review of if statements

 == vs. equals()

 Selection operator, ? :

 switch and enumerations



int letterCount = 0;

int upperCaseCount = 0;

String switchedCase = "";

for (int i = 0; i < message.length(); i++) {

char nextChar = message.charAt(i);

if (Character.isLetter(nextChar)) {

letterCount++;

}

if (Character.isUpperCase(nextChar)) {

upperCaseCount++;

switchedCase += Character.toLowerCase(nextChar);

} else if (Character.isLowerCase(nextChar)){

switchedCase += Character.toUpperCase(nextChar);

} else {

switchedCase += nextChar;

}

}



 Exercise: EmailValidator
◦ Use a Scanner object

◦ Prompt for user’s email address

◦ Prompt for it again

◦ Compare the two entries and report whether or not 
they match

 Notice anything strange?



 In Java:
◦ o1 == o2 compares values

◦ o1.equals(o2) compares objects

 Remember: variables of class type store 
reference values

 How should you compare the email addresses 
in the exercise?

Q1



 Statements: used only for their side effects
◦ Changes they make to stored values or control flow

 Expressions: calculate values

 Many statements contain expressions:

◦ if (amount <= balance) {
balance = balance – amount;

} else {

balance = balance – OVERDRAFT_FEE;

}



 Let’s us choose between two possible values 
for an expression

 Example:

◦ balance = balance –
(amount <= balance) ?

amount : OVERDRAFT_FEE

 Also called “ternary” operator (Why?)

Q2







char grade = …

int points;

switch (grade) {

case „A‟:

points = 95; 

break;

case „B‟: 

points = 85; 

break;

…

default:

points = 0;

}

Can switch on 
integer, character, 

or “enumerated 
constant”

Don’t forget the 
breaks!

Q3



 Let us specify 
named sets of 
values:
public enum Suit {

CLUBS,

SPADES,

DIAMONDS,

HEARTS

}

 Then switch on 
them:
public String 

colorOf(Suit s) {

switch (s) {

case CLUBS:

case SPADES:

return “black”;

default:

return “red”;

}

} 



 Implement a class Bid
◦ Constructor should take a “trump” Suit and an 

integer representing a number of “tricks”

◦ Test and implement a method, getValue(), that 
returns the point value of the bid, or 0 if the bid 
isn’t legal.  See table for values of the legal bids.

Spades Clubs Diamonds Hearts No Trump

6 tricks 40 60 80 100 120

7 tricks 140 160 180 200 220

8 tricks 240 260 280 300 320

9 tricks 340 360 380 400 420

10 tricks 440 460 480 500 520



 Comparison operators: <, <=, >, >=, !=, ==

 Comparing objects: equals(), compareTo()

 Boolean operators:

◦ and: &&

◦ or: ||

◦ not: !

Q4



 A common pattern in Java:
public boolean isFoo() {

… // return true or false depending on

// the Foo-ness of this object

}

 Exercise:
◦ Tests and implement isValid() method for Bid

 JUnit has test methods assertTrue() and 
assertFalse() that will be handy

◦ Change value() to return 0 if isValid() is false

Q5



 Black box testing: testing without regard to 
internal structure of program
◦ For example, user testing

 White box testing: writing tests based on 
knowledge of how code is implemented
◦ For example, unit testing

 Test coverage: the percentage of the source 
code executed by all the tests taken together
◦ Want high test coverage

◦ Low test coverage can happen when we miss 
branches of switch or if statements

Q6



 Study your code for Bid and BidTests

 Do you have 100% test coverage of the 
methods?

◦ getValue()

◦ isValid()

 Add tests until you have 100% test coverage



Finish CubicPlot from last 
time

Other homework problems if 
time permits


