
Network I/O
Work on Spellchecker Project

Everything for the Mini-project is due at the
beginning of your class time on Day 30. No
late days may be used for this one.
Writing up and turning in written problems is
no longer required. But you should still do
them at some point.
The Digital Resource Center is looking for a
student to do ANGEL support for faculty.
◦ See Nancy Bauer in the DRC if you're interested

I will provide some class time on Thursday for
filling out the evaluation forms
I recommend that you wait until then to do
them, so you'll be able to comment on the
full course, including your project experience.

Day 30 in class
Informal and informational
What does your program do? How does it do it
Discuss your data Structures and algorithms.
◦ If you use an algorithm that you did not write, be sure that you

can explain how it works.
Intended audience: Your classmates
◦ Already know what the project is.
◦ Already know Java
◦ Already know the data structures we have studied.
No more than 7 minutes, including Q&A time.
Just before your presentation, we will randomly choose
which of your team members will present, so everyone
should be prepared to do it.
Commit an outline of your presentation to your team
repository by 5:00 PM on Tuesday.

As always,
you can
find my
up-to-
date
schedule
online.

Spellchecker
Input and output
Networking
Anything else

Random access files and serialization
Networking intro
Work on Spellchecker

TCP/IP mechanism establishes an Internet
connection between two ports on two
computers
Each Internet application has its own
application protocol
This application protocol describes how data
for that application are transmitted

Application protocol used by the World Wide
Web
A web address is called a Uniform Resource
Locator (URL)
You type a URL into the address window of
your browser
◦ For example, http://java.sun.com/index.html

1. Examines the part of the URL between the
double slash and the first single slash
◦ In this case: java.sun.com
◦ This identifies the computer to which you want to

connect
◦ Because it contains letters, this part of the URL is

a domain name, not an IP address
◦ Browser sends request to a DNS server to obtain

IP address for java.sun.com

2. From the http: prefix, browser deduces
that the protocol is HTTP
◦ HTTP uses port 80 by default

3. It establishes a TCP/IP connection to port 80
at IP address obtained in step 1

4. It deduces from the /index.html that you
want to see the file /index.html and sends
this request formatted as an HTTP command
through the established connection

GET /index.html HTTP/1.0
a blank line

5. Web server running on computer whose IP
Address was obtained above receives the
request
◦ It decodes the request
◦ It fetches the file /index.html
◦ It sends the file back to the browser on your

computer

6. The browser displays the contents of the file
for you to see
◦ Since this file is an HTML file, it translates the

HTML codes into fonts, bullets, etc.
◦ If the file contains images, it makes more GET

requests through the same connection

Telnet program allows you to
◦ Type characters to send to a remote computer and
◦ View the characters that the remote computer

sends back
It is a useful tool to establish test connections
with servers
You can imitate the browser connection by
typing at the command line

telnet java.sun.com 80

After Telnet starts, type the following without
using backspace

then press Enter twice
The server responds to the request with the
file
Telnet is not a browser
It does not understand HTML tags, so it just
displays everything it was sent

GET / HTTP/1.0

Do not confuse HTTP with HTML
HTML is a document format that describes
the structure of a document
HTTP is a protocol that describes the
command set for web server requests

Continued

Web browsers
◦ Know how to display HTML documents
◦ And how to issue HTTP commands
Web servers
◦ Know nothing about HTML
◦ Merely understand HTTP and know how to fetch the

requested items

Command Meaning
GET Return the requested item

HEAD Request only the header information of an item

OPTIONS Request communications option of an item

POST Supply input to a server-side command and return the
result

PUT Store an item on the server

DELETE Delete an item on the server

TRACE Trace server communication

HTTP is one of many application protocols in
use on the Internet
Another commonly used protocol is the Post
Office Protocol (POP)
POP is used to download received messages
from e-mail servers
To send messages, you use another protocol:
Simple Mail Transfer Protocol (SMTP)

A socket is an object that encapsulates a
TCP/IP connection
There is a socket on both ends of a connection
Syntax to create a socket in a Java program:

Continued

Socket s = new Socket(hostname, portnumber);

Code to connect to the HTTP port of server,

If it can't find the host, the Socket
constructor throws an
UnknownHostException

java.sun.com final int HTTP_PORT = 80;
Socket s = new Socket("java.sun.com", HTTP_PORT);

Use the input and output streams attached to the
socket to communicate with the other endpoint
Code to obtain the input and output streams

Continued

InputStream instream = s.getInputStream();
OutputStream outstream = s.getOutputStream();

When you send data to outstream, the
socket forwards them to the server
The socket catches the server's response and
you can read it through instream
When you are done communicating with the
server, close the socket

s.close();

InputStream and OutputStream send and
receive bytes
To send and receive text, use a scanner and
a writer

Scanner in = new Scanner(instream);
PrintWriter out = new PrintWriter(outstream);

Continued

A PrintWriter buffers the characters and
only sends when the buffer is full
◦ Buffering increases performance
When sending a command, you want the
whole command to be sent now
◦ Flush the buffer manually:

out.print(command);
out.flush();

This program lets you retrieve any item from
a web server
You specify the host and item from the
command line
For example:

The "/" denotes the root page of the web
server that listens to port 80 of
java.sun.com

Continued

java WebGet java.sun.com /

WebGet:
◦ Establishes a connection to the host
◦ Sends a GET command to the host
◦ Receives input from the server until the server closes

its connection

import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.net.Socket;
import java.util.Scanner;

/**
This program demonstrates how to use a socket to communicate
with a web server. Supply the name of the host and the
resource on the command-line, for example
java WebGet java.sun.com index.html

*/
public class WebGet
{

public static void main(String[] args) throws IOException
{

Continued

// Get command-line arguments

String host;
String resource;

if (args.length == 2)
{

host = args[0];
resource = args[1];

}
else
{

System.out.println("Getting / from java.sun.com");
host = "java.sun.com";
resource = "/";

}
Continued

// Open socket

final int HTTP_PORT = 80;
Socket s = new Socket(host, HTTP_PORT);

// Get streams

InputStream instream = s.getInputStream();
OutputStream outstream = s.getOutputStream();

// Turn streams into scanners and writers

Scanner in = new Scanner(instream);
PrintWriter out = new PrintWriter(outstream);

// Send command

String command = "GET " + resource + " HTTP/1.0\n\n";
out.print(command);
out.flush();

// Read server response

while (in.hasNextLine())
{

String input = in.nextLine();
System.out.println(input);

}

// Always close the socket at the end

s.close();
}

}

Continued

We probably won't get to the final example in
class.
I have attempted to give sufficient
explanation so you can get it by reading the
slides.
Please study this examples and ask questions
in the Day 30 class if there are things you do
not understand.

Sample server program: enables clients to
manage bank accounts in a bank
When you develop a server application, you
need to come up with an application-level
protocol
The client can use this protocol to interact
with the server
A simple bank access protocol is shown on
the next slide

Client
Request

Server
Response

Meaning

BALANCE n n and the balance Get the balance of account
n

DEPOSIT n a n and the new
balance

Deposit amount a into
account n

WITHDRAW n
a

n and the new
balance

Withdraw amount a from
account n

QUIT none Quit the connection

For this simple example, account numbers will be 0-9.

The server waits for clients to connect on a
certain port
◦ We choose 8888
To listen for incoming connections, use a
server socket
To construct a server socket, provide the port
number.

The ServerSocket is not the actual socket that
the server will use to talk to the client, but
merely a means of "listening" for a client that
wants to connect to the server.

ServerSocket server = new ServerSocket(8888);

Use the accept method to wait for client
connection and obtain a socket
Note that once the client connects, the server
has an ordinary socket (its half of the
connection to the client).

Socket s = server.accept();
BankService service = new BankService(s, bank);

BankService carries out the service
◦ Implements the Runnable interface
◦ Its run method will be executed in a separate

thread that serves each client connection.
◦ In this way, multiple clients can be connected at the

same time.

Continued

run gets a scanner and writer from the
socket, then calls doService, which reads and
executes the client's commands:
public void doService() throws IOException {

while (true) {
if (!in.hasNext())

return;
String command = in.next();
if (command.equals("QUIT"))

return;
executeCommand(command);

}
}

Processes a single command
If the command is DEPOSIT, it carries out the
deposit

WITHDRAW is handled in the same way

int account = in.nextInt();
double amount = in.nextDouble();
bank.deposit(account, amount);

Continued

After each command, the account number and
new balance are sent to the client:

out.println(account + " " + bank.getBalance(account));

doService returns to the run method if the
client closed the connection or the command
equals QUIT
Then run closes the socket and exits
How can we support multiple simultaneous
clients?
◦ Spawn a new thread whenever a client connects
◦ Each thread is responsible for serving one client

BankService implements Runnable; so, it
can start a thread using start() (from the
class Thread) .
The new thread communicates with the client,
so that the original thread can listen for
another client connection.
The new thread dies when the client quits or
disconnects so that the run method exits

Continued

In the meantime, BankServer loops back to
accept the next connection

The server program never stops
When you are done running the server, you
need to kill it

while (true) {
Socket s = server.accept();
BankService service = new BankService(s, bank);
Thread t = new Thread(service);
t.start();

}

import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;

// A server that executes the Simple Bank Access Protocol.
public class BankServer {

public static void main(String[] args) throws IOException {
final int ACCOUNTS_LENGTH = 10;
Bank bank = new Bank(ACCOUNTS_LENGTH);
final int SBAP_PORT = 8888;
ServerSocket server = new ServerSocket(SBAP_PORT);
System.out.println("Waiting for clients to connect...");

while (true) {
Socket s = server.accept();
System.out.println("Client connected.");
BankService service = new BankService(s, bank);
Thread t = new Thread(service);
t.start();

}
}

}

Start a new thread to
handle this client
connection so that the
server can continue to
accept other connections.

import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.net.Socket;
import java.util.Scanner;

// Executes Simple Bank Access Protocol commands from a socket.

public class BankService implements Runnable {
private Socket s;
private Scanner in;
private PrintWriter out;
private Bank bank;

/**
Construct a service object that processes commands from a socket for a bank.
@param aSocket the socket
@param aBank the bank

*/
public BankService(Socket aSocket, Bank aBank) {

s = aSocket;
bank = aBank;

}

public void run() {
try {

try {
in = new Scanner(s.getInputStream());
out = new PrintWriter(s.getOutputStream());
doService();

} finally {
s.close();

}
} catch (IOException exception) {

exception.printStackTrace();
}

}

Establish the stream connections to the
client, and let doService do the actual work.

/**
Executes all commands until the QUIT command or the
end of input.

*/
public void doService() throws IOException
{

while (true)
{

if (!in.hasNext()) return;
String command = in.next();
if (command.equals("QUIT")) return;
else executeCommand(command);

}
}

Read and Execute commands until the command
is "QUIT" or the client breaks the connection.

The call to flush() is necessary because a
PrintWriter's output is buffered.

public void executeCommand(String command){
int account = in.nextInt();
if (command.equals("DEPOSIT")){

double amount = in.nextDouble();
bank.deposit(account, amount);

}
else if (command.equals("WITHDRAW")) {

double amount = in.nextDouble();
bank.withdraw(account, amount);

}
else if (!command.equals("BALANCE")) {

out.println("Invalid command");
out.flush();
return;

}
out.println(account + " " + bank.getBalance(account));
out.flush();

}

**
A bank consisting of multiple bank accounts.

*/
public class Bank {

private BankAccount[] accounts;

/**
Constructs a bank account with a given number of accounts.
@param size the number of accounts

*/
public Bank(int size) {

accounts = new BankAccount[size];
for (int i = 0; i < accounts.length; i++)

accounts[i] = new BankAccount();
}

Field and constructor declarations

**
A bank consisting of multiple bank accounts.

*/
public class Bank {

private BankAccount[] accounts;

/**
Constructs a bank account with a given number of accounts.
@param size the number of accounts

*/
public Bank(int size) {

accounts = new BankAccount[size];
for (int i = 0; i < accounts.length; i++)

accounts[i] = new BankAccount();
}

Field and constructor declarations

public void deposit(int accountNumber, double amount) {
BankAccount account = accounts[accountNumber];
account.deposit(amount);

}

public void withdraw(int accountNumber, double amount) {
BankAccount account = accounts[accountNumber];
account.withdraw(amount);

}

public double getBalance(int accountNumber){
BankAccount account = accounts[accountNumber];
return account.getBalance();

}

import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.net.Socket;
import java.util.Scanner;

public class BankClient
{

public static void main(String[] args) throws IOException
{

final int SBAP_PORT = 8888;
Socket s = new Socket("localhost", SBAP_PORT);
InputStream instream = s.getInputStream();
OutputStream outstream = s.getOutputStream();
Scanner in = new Scanner(instream);
PrintWriter out = new PrintWriter(outstream);

String command = "DEPOSIT 3 1000\n";
System.out.print("Sending: " + command);
out.print(command);
out.flush();
String response = in.nextLine();
System.out.println("Receiving: " + response);

command = "WITHDRAW 3 500\n";
System.out.print("Sending: " + command);
out.print(command);
out.flush();
response = in.nextLine();
System.out.println("Receiving: " + response);

command = "QUIT\n";
System.out.print("Sending: " + command);
out.print(command);
out.flush();

s.close();
}

}

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

/**
A bank account has a balance that can be changed by
deposits and withdrawals.

*/
public class BankAccount {

private double balance;
private Lock balanceChangeLock;

/**
Constructs a bank account with a zero balance.

*/
public BankAccount() {

balance = 0;
balanceChangeLock = new ReentrantLock();

}

/**
Constructs a bank account with a given balance.
@param initialBalance the initial balance

*/
public BankAccount(double initialBalance) {

balance = initialBalance;
}

The concurrency
Lock is to make
sure that two
clients do not try
to change the
balance on this
account
simultaneously.

public void deposit(double amount) {
balanceChangeLock.lock();
try {

double newBalance = balance + amount;
balance = newBalance;

} finally {
balanceChangeLock.unlock();

}
}

public void withdraw(double amount) {
balanceChangeLock.lock();
try {

double newBalance = balance - amount;
balance = newBalance;

} finally {
balanceChangeLock.unlock();

}
}

public double getBalance() {
return balance;

}

5. Why didn't we choose port 80 for the bank
server?

6. Can you read data from a server socket?

5. Port 80 is the standard port for HTTP. If a
web server is running on the same computer,
then one can't open a server socket on an
open port.

6. No, a server socket just waits for a
connection and yields a regular Socket
object when a client has connected. You use
that socket object to read the data that the
client sends.

	CSSE 220 Day 29
	CSSE 220 Day 29
	Course Evaluations
	Project presentation/demonstration�
	My schedule this week
	Questions from students
	Today's Agenda
	Application Level Protocols
	Hypertext Transfer Protocol (HTTP)
	Browser Steps: 1
	Browser Steps: 2
	Browser Steps: 3
	Browser Steps: 4
	Browser Steps: 5
	Telnet
	Telnet
	Web Server Response in Telnet
	HTTP
	HTTP
	HTTP Commands
	Application Level Protocols
	A Client Program – Sockets
	A Client Program – Sockets
	Client Program – Input & Output Streams
	Client Program – Input & Output Streams
	Client Program – Scanners and Writers
	A Client Program – Scanners and Writers
	A Client Program – WebGet
	A Client Program – WebGet
	File WebGet.java
	File WebGet.java
	File WebGet.java
	File WebGet.java
	Server and Client Example
	A Server Program
	Simple Bank Access Protocol
	A Server Program
	A Server Program
	A Server Program – BankService
	A Server Program – BankService
	A Server Program – executeCommand
	A Server Program – executeCommand
	A Server Program
	A Server Program – Threads
	A Server Program – Threads
	Using the Telnet Program to Connect to the Server
	File BankServer.java
	File BankService.java
	BankService run method
	BankService doService method
	BankService executeCommand method
	File Bank.java
	File Bank.java
	Bank transaction methods
	BankClient first part (setup)
	BankClient second part (commands)
	BankAccount first part (setup)
	BankAccount transactions
	Self Check
	Answers

