
Finish the Sorting Intro
Non-text Files, reading and Writing Objects

Work on Spellchecker Project

Turn in written problem now.
If you find a good dictionary to use, please post
a link to it on the Mini-project discussion
forum.
Everything for the Mini-project is due at the
beginning of your class time on Day 30. No
late days may be used for this one.
◦ Why?
◦ Presentations in class that day
◦ Graders are students, too.
There will be time in class to work with your
team every day. Do not miss it!

Due to end of term time pressures, I will no
longer have due dates for written problems or
collect them.
I will assign problems and post solutions.
When you get a chance, you should do them
and check your answers.

Day 30 in class
Informal and informational
What does your program do? How does it do it
Data Structures and algorithms.
Intended audience: Your classmates
◦ Already know what the project is.
◦ Already know Java'
◦ Already know the data structures involved.
No more than 7 minutes, including Q&A time.
Just before your presentation, we will randomly
choose which of your team members will
present, so everyone should be prepared to do it.

THE DEPARTMENT OF COMPUTER SCIENCE
& SOFTWARE ENGINEERING

INVITES YOU TO THE

DIRECTOR OF SOFTWARE ENGINEERING
FACULTY CANDIDATE TALK

SHAWN BOHNER
VIRGINIA TECH

SOFTWARE SYSTEMS CHANGE TOLERANCE:
AN EVOLVING PERSPECTIVE

FRIDAY, FEBRUARY 8, 2008 4:30 PM
O269

Please
stay
afterward
to talk
informally
with
Shawn.

JP says
that
There will
be pizza!

Monday, 10th period
John Georgas

Title: Supporting Architecture- and Policy-
based Self-Adaptive Software Systems

Work on Spellchecker
Finish the Sorting intro
Begin random access files and serialization

Substantial progress on SpellChecker
Written problems – not to turn in.
A few things to read from the internet.
Document available later today.

What should you know/be able to do by the end of
this course?
◦ The basic idea of how each sort works

insertion, selection, bubble, shell, merge
◦ Can write the code in a few minutes

insertion, bubble, selection
perhaps with a minor error or two
not because you memorized it, but because you understand it

◦ What are the best case and worst case orderings of N data
items? For each of these:

Number of comparisons
Number of data movements

Insertion sort
◦ for (i=1; i< N; i++)

place a[i] in its correct position relative to a[0] …a[i-1]
move "right" each of those items that is less than a[i].

Selection sort
◦ for (i=N-1; i>0; i--)

maxPos = location of largest element among a[0] … a[i]
a[i]↔a[maxPos]

Bubble sort
◦ for (i=0; i< N-1; i++)
◦ for (j=0; j≤ i; j++)

if (a[j] > a[j+1]) a[j]↔a[j+1]
Demonstrations:
◦ http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
◦ http://www.geocities.com/siliconvalley/network/1854/Sor

t1.html

http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
http://www.geocities.com/siliconvalley/network/1854/Sort1.html
http://www.geocities.com/siliconvalley/network/1854/Sort1.html

1959, Donald Shell
Based on insertion sort
Faster because it compares elements with a gap
of several positions
For example, if the gap size is 8,
◦ Insertion sort elements 0, 8, 16, 24, 32, 40, …
◦ Insertion sort elements 1, 9, 17, 25, 33, 41, …
◦ …
◦ Insertion sort elements 7, 15, 23, 31, 39, 47, …
Elements that are far out of order are quickly
moved closer to where they are supposed to go.

public static final int[] GAPS = {1, 4, 10, 23, 57, 132, 301, 701};

public static void shellSort(int[] a) {
for (int gapIndex = GAPS.length - 1; gapIndex >= 0; gapIndex--) {

int increment = GAPS[gapIndex];
if (increment < a.length)

for (int i = increment; i < a.length; i++) {
int temp = a[i];
for (int j = i;

j >= increment && a[j - increment] > temp;
j -= increment) {
a[j] = a[j - increment];

a[j - increment] = temp;
}

}
}

}

TEST CODE:
public static void main(String[] args) {

int SIZE = 31;
int [] nums = new int[SIZE];
for (int i=0; i<SIZE; i++) {

nums[i] = (SIZE/2 + 5*i) % SIZE;
}
printArray("Before sort", nums);
shellSort(nums);
printArray("After sort", nums);

Start with a large gap
Do it again with a smaller gap
Keep decreasing the gap size
The last time, the gap must be 1 (why?)
No gap size should be a multiple of another
(except all are multiples of 1)
If proper gaps are chosen, worst-case
performance is O(N (log N)2)
An example of shellsort analysis (not for the
faint of heart):
◦ http://www.cs.princeton.edu/~rs/shell/paperF.pdf

http://www.cs.princeton.edu/~rs/shell/paperF.pdf

http://www.cs.princeton.edu/~rs/shell/anima
te.html

http://www.cs.princeton.edu/~rs/shell/animate.html
http://www.cs.princeton.edu/~rs/shell/animate.html

Divide and conquer
Sort each half, merge halves together
How to sort each half?
◦ Use Merge sort
Running time to merge two sorted arrays
whose total length is N:
◦ O(N)

public static void mergeSort(int [] a)
{

int [] tmpArray = new int[a.length];
mergeSort(a, tmpArray, 0, a.length - 1);

}

/**
* Internal method that makes recursive calls.
* @param a an array of Comparable items.
* @param tmpArray an array to place the merged result.
* @param left the left-most index of the subarray.
* @param right the right-most index of the subarray.
*/

private static void mergeSort(int [] a, int [] tmpArray,
int left, int right)

{
if(left < right)
{

int center = (left + right) / 2;
mergeSort(a, tmpArray, left, center);
mergeSort(a, tmpArray, center + 1, right);
merge(a, tmpArray, left, center + 1, right);

}
}

/**
* Internal method that merges two sorted halves of a subarray.
* @param a an array of Comparable items.
* @param tmpArray an array to place the merged result.
* @param leftPos the left-most index of the subarray.
* @param rightPos the index of the start of the second half.
* @param rightEnd the right-most index of the subarray.
*/

private static void merge(int [] a, int [] tmpArray,
int leftPos, int rightPos, int rightEnd) {

int leftEnd = rightPos - 1;
int tmpPos = leftPos;
int numElements = rightEnd - leftPos + 1;

// Main loop
while(leftPos <= leftEnd && rightPos <= rightEnd)

if(a[leftPos] <= a[rightPos])
tmpArray[tmpPos++] = a[leftPos++];

else
tmpArray[tmpPos++] = a[rightPos++];

while(leftPos <= leftEnd) // Copy rest of first half
tmpArray[tmpPos++] = a[leftPos++];

while(rightPos <= rightEnd) // Copy rest of right half
tmpArray[tmpPos++] = a[rightPos++];

// Copy tmpArray back
for(int i = 0; i < numElements; i++, rightEnd--)

a[rightEnd] = tmpArray[rightEnd];
}

For simplicity, assume that N is a power of 2.
N = Time for merging the sorted halves
N = (N/2)*2 = time for merging four sorted
"quarters" into two sorted "halves"
N = (N/4)*4 = time for merging four sorted
"eighths" into two sorted "quarters"
…
N = (2)*N/2 = time for merging N single
elements into N/2 sorted pairs
Total =

Back In the Day [TM]
◦ I/O only involved a few possible

sources/destinations
◦ terminal, printer, card reader, hard disk
◦ Typically there were separate sets of functions for

each type of source or destination.
Now there are many more
sources/destinations
◦ including network locations.
◦ and we recognize that most of the I/O functions

are common to all sources/destinations
In order to make all I/O more flexible and
adaptable in Java, simple I/O is more
complex than in some other languages.

What is a Stream?
◦ An abstract representation of information flow that is

independent of the source and/or destination.
A stream is One-Way
◦ Either an Input Stream or an Output Stream
InputStream
◦ Subclasses include FileInputStream, ObjectInputStream,

AudioInputStream.
◦ A socket has a getInputStream method that lets us get info

from a network connection.
◦ System.in is an InputStream
OutputStream
◦ Subclasses include FileOutputStream, ObjectOutputStream.
◦ A PrintStream is a specialized OutputStream with

characteristics suitable for standard output.
◦ System.out is a PrintStream.

Three pre-defined streams
◦ System.in (an InputStream)
◦ System.out (a PrintStream)
◦ System.err (a PrintStream)
Streams are byte-oriented.
They read or write bytes or arrays of bytes.
Readers and Writers are character-oriented, they
read or write characters or arrays of characters.
Examples of Reader classes:
◦ InputStreamReader, BufferedReader, FileReader,

PushBackReader, StringReader.
Examples of Writer classes:
◦ OutputStreamWriter, PrintWriter, BufferedWriter,

StringWriter

Line-at-a-time input from the standard input stream System.in

in

System

An InputStream (type depends on environment)

InputStreamReader

HAS-A

in

BufferedReader

A BufferedReader makes it easy to read
a stream one line at a time. Each call to
readline returns a String containing the
next input line (without the end-of-line
character).

I/O to/from files using a BufferedReader and a PrintWriter.

Typical use of readline to process input

Note that FileReader and FileWriter
have constructors that take a
filename, so we don't need the
intermediate step of constructing an
FileInputStream directly.

This is from Weiss, page 57

Can you see what is not so good about the
code on the previous slide?

What should we do instead?

System.getProperty("line.separator");

	CSSE 220 Day 27
	CSSE 220 Day 27
	Written problems
	Project presentation/demonstration�
	Slide Number 5
	Second candidate talk
	Today's Agenda
	Homework
	Knowledge of Elementary Sorts
	Elementary Sort summary
	Shell sort
	ShellSort example
	ShellSort Code
	Shell sort gap sizes
	Shellsort animation
	Merge Sort
	Slide Number 17
	Slide Number 18
	Informal Analysis of Mergesort
	Java I/O (Input and Output) 1
	Java I/O (Input and Output) 2
	Java I/O (Input and Output) 3
	Reader Construction - From System.in
	Reader/Writer Construction - From files
	Weiss's one bad idea in that example

