
Exam Review
Minesweeper mine placement

Hardy Efficiency

Reminder: Exam #2 is this Thursday
◦ In order to reduce time pressure, you optionally may

take the non-programming part 7:10-7:50 AM.
◦ You may bring one piece of paper with notes for the

first part.
◦ Same resources as last time for the programming

part.
Markov Milestone 2 due Friday 5 PM
Begin thinking about Spell-check program
You can still do the Mini-project partner
surveys this morning
Blood Drive today and tomorrow - Union

Answers to your questions in preparation for
the exam
Some (not-so stupid) Minesweeper tricks.
A look at my Hardy solution
Empirical analysis of an algorithm.
More on Linked Lists?

Abstract Data Types and Data Structures
Collections and Lists
Markov
Exam
Material you have read
Anything else

Picking random locations for mines
Counting neighboring mines

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

Go through the values of a and b in the order
just described
When we calculate each total
◦ Look in table if we have seen that total before
◦ If not, record its triple: (a, b, total) in table.
◦ If so, record in the duplicates table
When we get N items in the duplicates table
◦ They may not be the N smallest. Sort them
◦ See if we can find any others with sums smaller than

the max of those N.
If, so, they will all have a b that is less than the cube root
of this max. Find all of those and add to duplicates table.

Sort again and pick out the Nth one.

Look at it together
Ask questions about anything you don't
understand.
I'll ask you questions.
We'll add some timing computations.
Try to figure out a big-Oh estimate.
Then see how much of a speed-up we get by
using a faster data structure

Each node has two pointers, prev and next.
There is one other new node, tail, whose prev
pointer points to the node containing the last
element of the list.
This makes remove() easier to write
◦ and it also makes an efficient ListIterator possible.

	CSSE 220 Day 23
	CSSE 220 Day 23
	Today's Agenda
	Answers to your questions
	Minesweeper tricks
	A Hardy Algorithm
	A Hardy Algorithm
	A Hardy Algorithm
	A Hardy Algorithm
	A Hardy Algorithm
	A Hardy Algorithm
	A Hardy Algorithm
	Hardy Algorithm basic idea
	Hardy Code
	Doubly-linked list

