CSSE 220 Day 20

Java Collections Framework

LinkedList Implementation
Work on Markov

CSSE 220 Day 20

» Reminder: Exam #2 is Thursday, Jan 31.

» In order to reduce time pressure, you
optionally may take the non-programming
part 7:10-7:50 AM.

)

Answers to your questions

» Abstract Data Types and Data Structures
» Markov

» Material you have read

» Anything else

Today's agenda

» Java Collections Framework
» LinkedList Implementation
» Work on Markov

Java Collections Framework
Documentation

» Introductory page:
o http://java.sun.com/j2se/1.5.0/docs/quide/collecti

ons/index.html

» Outline of the classes:
o http://java.sun.com/j2se/1.5.0/docs/quide/collecti

ons/reference.html

» What’s new in JDK 1.5:
o http://java.sun.com/j2se/1.5.0/docs/quide/collecti

ons/changes5.html

http://java.sun.com/j2se/1.5.0/docs/guide/collections/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/reference.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/reference.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/changes5.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/changes5.html

Data Structure Overview

Array O(n) can't do it Constant-time access by position

Stack top only top only O(1) Easy to implement as an array.
O(1)

Queue frontonly O(1) insert rear, remove front.
O(1)

ArrayList O(log N) O(N) Constant-time access by position
Linked List O(n) O(1) O(N) to find insertion position.

HashSet/Map O(1) 0o(1) If table not too full
TreeSet/Map O(log N) O(log N) Kept in sorted order

MultiSet O(log N) O(log N) keep track of multiplicities
PriorityQueue O(log N) O(log N) Can only find/remove smallest
Tree O(log N) O(log N) If tree is balanced

Graph O(N*M)? O(M)? N nodes, M edges

Network shortest path, maxFLow

Some Collection interfaces and classes

B Interface
B Abstract Class
] Concrete Class

Extends
Implements

This is the Java 1.2 picture. Java 1.5 added Queue,
PriorityQueue, and a few other interfaces and classes.

Collections classes and interfaces

(classes at top, interfaces at
bottom)

LinkedList
AbstractSequential (is a Clonabla,
List | List, Sarializable)|

ArrayList iz a Clonable,
List, Serializable)

AbstractList
(i a List)

HashSet (is a Clonable,
Abstract Sarializable, Set)

— Collection teamen
{is a collection) | [TreeSet (s a Clanable,

Serializable, SortadSet)
HashMap {is a Clonabla,
Map, Serlalizable)

AbstractMap| | [TreeMap (is a Clonable,
(is a Map) [[Serializable, SortedMap)

WeakHashMap
(is a Map)

Collection

Comparator

[terator | —{ List iterator |

I Map |—| SortedMap I

Map.Entry

Specifying an ADT in Java
» The main Java tool for specifying an ADT is ...
javautil ... an interface
Major example: The java.util.Collection interface.
» Some important methods from this interface:

Interface Collection<E>

add ([E o)
Enszures that this collection contains the specified element (optional operation).

beelean| nontains (Object o)

Eeturns true if this collection contains the stecified eletnent.

isEmpty ()
Eeturnz true if this collection contains tio elements.

booclezan

beclean | emove (Ohiect o)

Eemoves a single mstance of the specified element from this collection, if it 15 preszent
(optional operation).

size ()
Feturns the number of elements n this collection.

I+ iz <E> | -
—=EEEEERE2T ljterator |

Feturns an iterator owver the eletnents in this collection.

What's an iterator?

» More specifically, what is a java.util.lterator?
> It's an interface:

- Interface java.util.lterator<E>
- with the following methods:

hasHext ()
Eeturns true if the tteration has more elements.

next (]
Eeturns the nesxt element in the tteration.

remove [

Eemowes from the underlying collection the last element returned by the tterator (optional operation).

An extension, Listlterator, adds:

beclean |hazPrevious ()
Feturns crue if this st sterator has more elements when traversing the list i the reverse direction.

nextIndex)
Eeturns the index of the element that would be returned by a subsequent call to nexc.

previous ()
Eeturns the prewous element i the lst.

previousIndex)
Eeturns the index of the element that would be returned by a subsequent call to previous.

gset (Chiject o)
Eeplaces the last element returned by next of previous with the specified element {optional operation).

Example: Using an Iterator

In this continuation of the previous example, ag iIs a
Collection object.

for {(Iterator<Integer> i1tr = ag.iterator(); itr.hasNexti);
sum += i1tr.next();
Svatem. out. printlnisum) ;

In Java 1.5 we can simplify it even more.

// New approach that uses an implicit iterator:
for (Integer wal : ag)

sum += +wwal;
d3vatem. out. println{sum) ;

Note that the Java compiler translates the latter code into the former.

)

Tangent: Iterating over an enumerated type

—la== EnumTe=t {
genun MyColors {orangs. blue, vellow, green. red}:

public =tatic wvoilid main (String[] arg=s) { Progr:c : i
for (MyColors o @ MyColors . walue=s()) {
Sy=tem . out . printlnic): T AN E

} 1 Lie
MyColors coc = MyColors. blue;

switch (o)
CAa=E Orange:
Sy=tem.out . println{ "It 1= orangs!") |=
breal: ; o -
Ca=E gresn .
Sy=tem.out . printlni"0Oh no! Hot gresn!");
breal:;
ca=s blue:
Sy=tem.out . println"blus");
breal;
default:
Sw=ten.out . printlni "other")

Additional Methods from the

Collection Interface

addAll - add all of the elements from another
collection to this one

containsAll - does this collection contain all of
the elements of the other collection?

removeAll - removes all of this collections

elements that are also contained in the other
collection

retainAll - removes all of this collections
elements that are not contained in the other
collection

toArray - returns an array that contains the same
elements as this collection.

Sort and Binary Search

» The java.util .Arrays class provides static methods for

sorting

and doing binary search on arrays. Examples:

=tatic int

binarySearchi(COhiject[] a, Chject kevy)
—earches the speciied array for the specified object using
the binatry search algorithin.

=tatic int

bhinarySearch(Chiject[] a, Chject key, Comparator o)

=eatrches the speciied array for the speciied object using
the binary search algorithin.

=tatzic woid

sort (Chiject[] a)
orts the speciiied array of objects mto ascending order,
according to the patural ordering of its elements.

=tatic woid

sort (Chject[] a, Comparator o)

otts the speciiied array of objects according to the order
cuced by the specified comparator,

Sort and Binary Search

» The Java.util.Collections
class provides similar static methods
for sorting and doing binary search on
Collections. Specifically Lists.

» Look up the details in the
documentation.

The weiss.util and
weiss.nonstandard packages

» In weiss.util, the author shows "bare bones’
possible implementations of some of the
classes in java.util.

» He picks the methods that illustrate the

essence of what is involved in the
implementation, for educational purposes.

» Some other Data Structures classes are in
weiss.nonstandard.

The weiss.util and
weiss.nonstandard packages

» In weiss.nonstandard, the author shows
implementations of some common data
structures that are not part of the java.util
package, and he also shows alternate
approaches to implementing some classes

(like Stack and LinkedList) that are in
java.util.

The weiss.util and
weiss.nonstandard packages

» If you followed the directions in assignment
1, both of these packages should be
accessible to your code.
> import weiss.nonstandard.*;

» Documentation is available, and you can copy

It to your computer.

Now that we know about using
some data structures ...

» It’s time to look at an implementation.

List Interface (extends Collection)

» A List is an ordered collection, items accessible by
position. Here, ordered does not mean sorted.
» interface java.util.List<E>

» User may insert a new item at a specific position.
» Some important List methods:

Yol add (int index, E element)

Inserts the spectied element at the spectfied posttion m this bst (optional operation).

[]

get (int index)
Eeturns the element at the specified postion m this bt

int

indexDf (Chiect o)

Eeturns the index i this kst of the first occurrence of the spectfied element, or -1 14
this list does not contamn this element

remove [int index)

Eemoves the element at the speciied postion i this hist (optional operation).

Elget (int index, E element]

Eeplaces the element at the spectfied postion m this hst with the speciied element
(optional operation).

ArrayList implementation of the List
Interface
Store items contiguously in a "growable" array.
Looking up an item by index takes constant time.

Insertion or removal of an object takes linear time
in the worst case and on the average (why?).

If Comparable list items are kept in sorted order in
the ArraylList, finding an item takes time
(how?).

Let’s sketch some of the implementation together.

- Fields, constructor for empty list.

What's an iterator?

» More specifically, what is a java.util.lterator?
> It's an interface:

- Interface java.util.lterator<E>
- with the following methods:

hasHext ()
Eeturns true if the tteration has more elements.

next (]
Eeturns the nesxt element in the tteration.

remove [

Eemowes from the underlying collection the last element returned by the tterator (optional operation).

An extension, Listlterator, adds:

beclean |hazPrevious ()
Feturns crue if this st sterator has more elements when traversing the list i the reverse direction.

nextIndex)
Eeturns the index of the element that would be returned by a subsequent call to nexc.

previous ()
Eeturns the previous element in the st

previousIndex ()
Eeturns the index of the element that would be returned by a subsequent call to previous.

weld | gt (Chject o)
Eeplaces the last element returned by next of previous with the specified element {optional operation).

LinkedList implementation of the List Interface

I
I

AD — Al i A2 L
|

\ / ‘
first last

» Stores items (non-contiguously) in nodes; each
contains a reference to the next node.

» Lookup by index is linear time (worst, average).

» Insertion or removal is constant time once we have
found the location.
- show how to insert A4 after Al.

» If Comparable list items are kept in sorted order,
finding an item still takes linear time.

Consider parts of a LinkedList implementation

class ListNode{

Object element; // contents of this node
ListNode next; // link to next node

ListNode (Object element,
ListNode next) {
this.element = element;
this.next = next;

}

ListNode (Object element) {
this(element, null);

}

ListNode () {
this(nhull);

How to implement
LinkedList?

fields?
Constructors?
Methods?

Let's do parts of a LinkedList implementation

class LinkedList implements List {
ListNode first;
ListNode last;

Constructors: (a) default (b) single element.

methods:
public boolean add(Object 0)
Appends the specified element to the end of this list (returns true)

public Int size() Returns the number of elements in this list.
public void add(int 1, Object 0) adds o at index i.
throws IndexOutOfBoundsException
public boolean contains(Object 0)
Returns true if this list contains the specified element. (2 versions).
public boolean remove(Object 0)
Removes the first occurrence (in this list) of the specified element.

public lterator i1terator()Can we also write listlterator() ?

Returns an iterator over the elements in this list in proper sequence.

	CSSE 220 Day 20
	CSSE 220 Day 20
	Answers to your questions
	Today's agenda
	Java Collections Framework Documentation
	Data Structure Overview
	Some Collection interfaces and classes
	Collections classes and interfaces�(classes at top, interfaces at bottom)
	Specifying an ADT in Java
	What's an iterator?
	Example: Using an Iterator
	Tangent: Iterating over an enumerated type
	Additional Methods from the Collection Interface
	Sort and Binary Search
	Sort and Binary Search
	The weiss.util and weiss.nonstandard packages
	The weiss.util and weiss.nonstandard packages
	The weiss.util and weiss.nonstandard packages
	Now that we know about using some data structures …
	List Interface (extends Collection)
	ArrayList implementation of the List Interface
	What's an iterator?
	LinkedList implementation of the List Interface
	Consider parts of a LinkedList implementation
	Let's do parts of a LinkedList implementation

