
Continue Data Structures Grand Tour
Work on Hardy's Taxi

You are to review several teams' Minesweeper
programs for functionality issues before the
end of the week.
◦ Details in yesterday's email.
◦ Surveys and instructions are also on ANGEL
Markov assignment will be done in pairs. You
can choose your partner again.
◦ Must be different than your Minesweeper partner.
◦ If you have not filled out the survey, please do it

now.

… appears to be ready. Let me know if you
have any problems with it.

addiator 4:53am > cd /class/csse/csse220/200820/
addiator 4:55am > ./check Hardy
Checking Hardy
Clearing
/afs/rh/class/csse/csse220/200820/turnin/mrozekma/Hardy/extract/
Copying *.java... done

Compiling project...
No compile errors found
mrozekma - Summary for Hardy
Graded on Tue Jan 15 04:55:28 EST 2008

N Points Your Answer
1 15/15 1729 = 1^3 + 12^3 = 9^3 + 10^3
5 18/18 32832 = 4^3 + 32^3 = 18^3 + 30^3
30 10/10 515375 = 15^3 + 80^3 = 54^3 + 71^3
100 4/4 4673088 = 25^3 + 167^3 = 64^3 + 164^3
500 3/3 106243219 = 307^3 + 426^3 = 363^3 + 388^3

Points earned: 50/50

Abstract Data Types and Data Structures
Hardy's Taxi
Material you have read
Anything else

Continue the Data Structures Tour
Work on Hardy's taxi

Look at the solution to the BinaryInteger
problem from Tuesday's class.
It will also be on ANGEL after my second class
today.

Array (1D, 2D, …)
StackWhat is "special" about

each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

Last-in-first-out (LIFO)
Only top element is accessible
Operations: push, pop, top, topAndPop
◦ All constant-time.
Easy to implement as a (growable) array
with the last filled position in the array
being the top of the stack.
Applications:
◦ Match parentheses and braces in an expression
◦ Keep track of pending function calls with their

arguments and local variables.
◦ Depth-first search of a tree or graph.

Array (1D, 2D, …)
Stack
Queue

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

First-in-first-out (FIFO)
Only oldest element in the queue is
accessible
Operations: enqueue, dequeue
◦ All constant-time.
Implement as a (growable) "circular" array
◦ http://maven.smith.edu/~streinu/Teaching/Cou

rses/112/Applets/Queue/myApplet.html
Applications:
◦ Simulations of real-world situations
◦ Managing jobs for a printer
◦ Managing processes in an operating system.
◦ Breadth-first search of a graph.

http://maven.smith.edu/~streinu/Teaching/Courses/112/Applets/Queue/myApplet.html
http://maven.smith.edu/~streinu/Teaching/Courses/112/Applets/Queue/myApplet.html

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

A list is an ordered collection where elements
may be added anywhere, and any elements
may be deleted or replaced.
Array List: Like an array, but growable and
shrinkable.
Linked List:

Running time for add, remove, find?

LinkedList<String> list = new LinkedList<String> ();
list.add("abc");
list.add("xyz");
list.add(1, "ddd");
list.add(2, "jkl");
System.out.println(list);
list.remove("ddd");
System.out.println(list);
list.remove(2);
System.out.println(list);

Output:
[abc, ddd, jkl, xyz]
[abc, jkl, xyz]
[abc, jkl]

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList
Set
MultiSet

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

Set: A collection that never contains two
distinct objects a and b, such that
a.equals(b).
Multiset (a.k.a. bag). An item can occur
multiple times, and the collection keeps track
of the multiplicity of each.
Two Java representations of sets
◦ TreeSet (based on a Binary Tree) – items ordered
◦ HashSet (based on Hash Table) – items not ordered.
Running times for add, remove, find?

Define a class to insert in the set:
class Pair implements Comparable<Pair>{

private String s1, s2;

public Pair(String s1, String s2) {
this.s1 = s1;
this.s2 = s2;

}

@Override public String toString() {
return String.format("<%s,%s>", this.s1, this.s2);

}

public int compareTo(Pair other){
return this.s1.compareTo(other.s1);

}

@Override public boolean equals(Object other) {
Pair oth = (Pair)other;
return this.s1.equals(oth.s1);

}

@Override public int hashCode() {
return s1.hashCode();

}
}

TreeSet<Pair> ts = new TreeSet<Pair> ();
ts.add(new Pair("abc", "1"));
ts.add(new Pair("def", "2"));
System.out.println(ts);
System.out.println(ts.contains(new Pair("abc", "3")));
ts.add(new Pair("abc", "3"));
System.out.println("After duplicate \"add\": " + ts);
ts.remove(new Pair("abc", "3"));
System.out.println(ts);
ts.add(new Pair("abc", "3"));
System.out.println(ts);
ts.add(new Pair("bbb", "4"));
System.out.println(ts);

Output:
[<abc,1>, <def,2>]
true
After duplicate "add": [<abc,1>, <def,2>]
[<def,2>]
[<abc,3>, <def,2>]
[<abc,3>, <bbb,4>, <def,2>]

HashSet<Pair> t2 = new HashSet<Pair> ();
t2.add(new Pair("abc", "1"));
t2.add(new Pair("def", "2"));
System.out.println(t2);
System.out.println(t2.contains(new Pair("abc", "3")));
t2.add(new Pair("abc", "3"));
System.out.println("After duplicate \"add\": " + t2);
t2.remove(new Pair("abc", "3"));
System.out.println(t2);
t2.add(new Pair("abc", "3"));
System.out.println(t2);
t2.add(new Pair("bbb", "4"));
System.out.println(t2);

Output:
[<abc,1>, <def,2>]
true
After duplicate "add": [<abc,1>, <def,2>]
[<def,2>]
[<abc,3>, <def,2>]
[<abc,3>, <def,2>, <bbb,4>]

Note that the
elements are not in
Comparable order.

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList
Set
MultiSet
Map (a.k.a. table, dictionary)
◦ HashMap
◦ TreeMap

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

A Table of key-value pairs.
Insert and look up things by key.
Implementations:
◦ TreeMap
◦ HashMap
Same running time as the corressponding
sets.
More details next time.

Or on HW 18 if you have finished Hardy's
Taxi.

	CSSE 220 Day 18
	CSSE 220 Day 18
	Hardy Grading Script …
	Answers to your questions
	Today's agenda
	But first …
	Some basic data structures
	Stack
	Slide Number 9
	Some basic data structures
	Queue
	Slide Number 12
	Some basic data structures
	List
	List Code Example
	Some basic data structures
	Set and MultiSet
	Java Set Example
	Java Set Example - TreeSet
	Java Set Example - HashSet
	Some basic data structures
	Map
	Work on Hardy's Taxi

