CSSE 220 Day 18

Continue Data Structures Grand Tour

Work on Hardy's Taxi




CSSE 220 Day 18

» You are to review several teams' Minesweeper

programs for functionality issues before the
end of the week.

> Details in yesterday's email.
> Surveys and instructions are also on ANGEL

Markov assignment will be done in pairs. You

can choose your partner again.
- Must be different than your Minesweeper partner.

- |If you have not filled out the survey, please do it
now.




Hardy Grading Script ...

» ... appears to be ready. Let me know if you
have any problems with it.

addiator 4:53am > cd /class/csse/csse220/200820/

addiator 4:55am > ./check Hardy

Checking Hardy

Clearing
/afs/rh/class/csse/csse220/200820/turnin/mrozekma/Hardy/extract/
Copying *.java... done

Compiling project. ..

No compile errors found

mrozekma - Summary for Hardy

Graded on Tue Jan 15 04:55:28 EST 2008

Points Your Answer
15715 1729 = 13 + 1273 = 9”3 + 1073
18/18 32832 = 473 + 32”"3 = 1873 + 3013
30 10710 515375 = 1573 + 80”3 = 5473 + 7173
100 4/4 4673088 = 2573 + 16773 = 643 + 16473
500 3/3 106243219 = 307”3 + 426"3 = 363”3 + 38873

Points earned: 50/50
:.\ \\\.___\.___ . )



Answers to your questions

» Abstract Data Types and Data Structures
» Hardy's Taxi

» Material you have read

» Anything else




Today's agenda

» Continue the Data Structures Tour
» Work on Hardy's taxi




But first ...

ook at the solution to the Binarylnteger
oroblem from Tuesday's class.

» 1t will also be on ANGEL after my second class
today.




Some basic data structures

: : » Array (1D, 2D, ...)
What is "special™ about , Stacz

each data type?
What is each used for?
What can you say about

time required for

- adding an element?

- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.




Stack

Last-in-first-out (LIFO)
Only top element is accessible
Operations: push, pop, top, topAndPop

> All constant-time.
Easy to implement as a (growable) array

with the last filled position in the array
being the top of the stack.

Applications:
- Match parentheses and braces in an expression

- Keep track of pending function calls with their
arguments and local variables.

- Depth-first search of a tree or graph.




pop, top

figure 6.20

The stack model:
Input to a stack is by
push, output is by top,
and deletion is by pop.




Some basic data structures

: : » Array (1D, 2D, ...)
What is "special™ about , Stacz

each data type? » Queue
What is each used for?
What can you say about

time required for

- adding an element?

- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.




Queue

First-in-first-out (FIFO)

Only oldest element in the queue is
accessible

Operations: enqueue, dequeue

> All constant-time.

Implement as a (growable) "circular” array

o

Applications:

Simulations of real-world situations
Managing jobs for a printer

Managing processes in an operating system.
Breadth-first search of a graph.

(¢] (o] (¢] o



http://maven.smith.edu/~streinu/Teaching/Courses/112/Applets/Queue/myApplet.html
http://maven.smith.edu/~streinu/Teaching/Courses/112/Applets/Queue/myApplet.html

figure 6.22

enqueue dequeue
— Queue —»

The queue model:
Input is b{;enqueue,

output is by getFront, getFront
and deletion is by
dequeue.




Some basic data structures

: : » Array (1D, 2D, ...)
What is "special™ about , Stacz

each data type? » Queue

_ » List
What 1s each used for? > ArrayList

o LinkedList

What can you say about

time required for

- adding an element?

- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.




List
» A list is an ordered collection where elements

may be added anywhere, and any elements
may be deleted or replaced.

» Array List: Like an array, but growable and
shrinkable.

» Linked List:

figure 6.19
- = A3 i — A simple linked list

=

Running time for add, remove, find?




List Code Example

LinkedList<String> list =
list.add(""abc™);
list.add("'xyz');
list.add(1, "'ddd");
list.add(2, "jkI');
System.out.printin(list); » Output:

new LinkedList<String> ();

list.remove(''ddd™);

System.out._printin(list);
list.remove(2);

System.out._printin(list);

» [abc, ddd, jkl, xyz]
[abc, jkl, xyz]
[abc, jkl]




Some basic data structures
— — » Array (1D, 2D, ...)
What iIs "special” about . Stack
each data type? » Queue

List
What is each used for? - 'erayust

> LinkedList
What can you say about 5et' |

time required for MultiSet
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.




Set and MultiSet

» Set: A collection that never contains two
distinct objects a and b, such that
a.equals(b).

» Multiset (a.k.a. bag). An item can occur

multiple times, and the collection keeps track
of the multiplicity of each.

» Two Java representations of sets
> TreeSet (based on a Binary Tree) - items ordered
- HashSet (based on Hash Table) - items not ordered.

» Running times for add, remove, find?




Java Set Example
» Define a class to insert in the set:

class Pair implements Comparable<Pair>{
private String sl, s2;

public Pair(String sl, String s2) {
this.sl = s1;
this.s2 = s2;

by

@Override public String toString() {
return String.format('<%s,%s>", this.sl, this.s2);

}

public int compareTo(Pair other){
return this.sl.compareTo(other.sl);

}

@Override public boolean equals(Object other) {
Pair oth = (Pair)other;
return this.sl.equals(oth.sl);

}

@Override public int hashCode() {
return sl_hashCode();




Java Set Example - TreeSet

TreeSet<Pair> ts = new TreeSet<Pair> ();

ts.add(new Pair('abc', "1'™));

ts.add(new Pair('def", ""2'));

System.out.printin(ts);
System.out.printin(ts.contains(new Pair('abc™, "3')));
ts.add(new Pair(abc', ""3'));
System.out.printIn("'After duplicate \"add\": " + ts);
ts.remove(new Pair('abc", "3'"));
System.out.printin(ts);

ts.add(new Pair(abc', ""3'));
System.out.printin(ts);
ts.add(new Pair('bbb'", "4'™));
System.out.printin(ts);

Output:

[<abc,1>, <def,b2>]

true

After duplicate "add": [<abc,1>, <def,b2>]
[<def,2>]

[<abc,3>, <def,b2>]

[<abc,3>, <bbb,4>, <def,2>]




Java Set Example - HashSet

HashSet<Pair> t2 = new HashSet<Pair> ();

t2.add(new Pair('abc', "1'™));

t2.add(new Pair('def", ""2'));

System.out.printin(t2);
System.out.printIn(t2.contains(new Pair('abc™, "3')));
t2.add(new Pair(abc', ""3'));
System.out.printIn("'After duplicate \"add\": " + t2);
t2.remove(new Pair('abc', "3'"));
System.out.printin(t2);

t2.add(new Pair(abc', ""3'));
System.out.printin(t2);
t2.add(new Pair('bbb", "4™));
System.out.printin(t2);

Output:

Note that the [<abc,1>, <def,2>]

elements are not in true
Comparable order. After duplicate "add": [<abc,1>, <def,b2>]

[<def,2>]
[<abc,3>, <def,2>]
[<abc,3>, <def,2>, <bbb,4>]




Some basic data structures

What Is "special" about
each data type?

What 1s each used for?
What can you say about

time required for

- adding an element?

- removing an element?
- finding an element?

» Array (1D, 2D, ...)
» Stack

» Queue

» List

> ArrayList

> LinkedList

Set

MultiSet

Map (a.k.a. table, dictionary)
- HashMap
> TreeMap

You should be able to answer all of
these by the end of this course.




Map

» A Table of key-value pairs.
» Insert and look up things by key.

» Implementations:

> TreeMap
- HashMap

» Same running time as the corressponding
sets.

» More details next time.




Work on Hardy's Taxi

» Or on HW 18 if you have finished Hardy's
Taxi.




	CSSE 220 Day 18
	CSSE 220  Day 18
	Hardy Grading Script …
	Answers to your questions
	Today's agenda
	But first …
	Some basic data structures
	Stack
	Slide Number 9
	Some basic data structures
	Queue
	Slide Number 12
	Some basic data structures
	List
	List Code Example
	Some basic data structures
	Set and MultiSet
	Java Set Example
	Java Set Example - TreeSet
	Java Set Example - HashSet
	Some basic data structures
	Map
	Work on Hardy's Taxi

