Adapted from Carnegie Mellon 15-213

CSSE132
Introduction

37 : Concurrency and Synchronization
May 13, 2013

Today

m Thread concepts
= Book details processes and |/O multiplexing
= pthreads

m Sharing
m Mutual exclusion
m Semaphores

Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading
m Thinking about all possible sequences of events in a

computer system is at least error prone and frequently
impossible

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?
= Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= Ljvelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

= Example: people always jump in front of you in line

m Many aspects of concurrent programming are beyond the
scope of this class.

Creating Concurrent Flows

m See book for example server using:

m 1. Processes
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

m 2. Threads

= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space

m 3.1/0 multiplexing with select ()
" Programmer manually interleaves multiple logical flows

= All flows share the same address space
= Relies on lower-level system abstractions

Traditional View of a Process

m Process = process context + code, data, and stack

Process context Code, data, and stack

stack

Program context: SP

Data registers

Condition codes shared libraries

Stack pointer (SP) brk — :

Program counter (PC) run-time heap
Kernel context: read/write data

VM structures PC — read-only code/data

Descriptor table

brk pointer

Alternate View of a Process

m Process = thread + code, data, and kernel context

Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

Thread (main thread) Code and Data
i_ ___________________ : shared libraries
I stack :
: SP : brk run-time heap
| Thread context: | read/write data
|
l Data registers : PC — read-only code/data
: Condition codes ! .
: Stack pointer (SP) I
| |
I I
|

A Process With Multiple Threads

m Multiple threads can be associated with a process
® Each thread has its own logical control flow
® Each thread shares the same code, data, and kernel context
= Share common virtual address space (inc. stacks)
= Each thread has its own thread id (TID)

Thread 1 (main thread) Shared code and data Thread 2 (peer thread)
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes . Condition codes
SP1 SP2
PC1 Kernel context: PC2
VM structures

Descriptor table
brk pointer

Logical View of Threads

m Threads associated with process form a pool of peers
= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

® 7
(P1)

Gn) Gn) Gn)
® © ®

(bar

“a| shared code, data
and kernel context

*e
*
*
*
-
*

Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate concurrency "= Can have true
by time slicing concurrency
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Threads vs. Processes

m How threads and processes are similar
= Each has its own logical control flow
® Each can run concurrently with others (possibly on different cores)
= Each is context switched

m How threads and processes are different
= Threads share code and some data
= Processes (typically) do not
" Threads are somewhat less expensive than processes

= Process control (creating and reaping) is twice as expensive as
thread control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
" Creating and reaping threads
= pthread create()
= pthread join()
= Determining your thread ID
= pthread self ()
" Terminating threads
= pthread cancel ()
= pthread exit()
= exit () [terminates all threads], RET [terminates current thread]
= Synchronizing access to shared variables
= pthread mutex init
= pthread mutex [un]lock
= pthread cond init

= pthread cond [timed]wait

The Pthreads "hello, world" Program

/%
* hello.c - Pthreads "hello, world" program
*/
Thread attributes
int main() {
pthread t tid; Thread arguments
d (void *p)

pthread create(&tid, NULL, thread, NULL);

pthread join(tid, NULL);
exit(0) ;
} return value

(void **p)

/* thread routine */

void *thread(void *vargp) ({
printf ("Hello, world!\n");
return NULL;

}

Execution of Threaded“hello, world”

main thread

call pthread_create()
pthread_create() returns

call pthread_join()

printf ()
main thread waits for

return NULL;
peer thread to terminate

(peer thread
terminates)

-
un®
un®
[LA
[LA
net®
net®
wnt®
nn®
e
wet®
wn®

un®
e
net®
wnt®
ant®
nnt®
[LA
nnt®
ant®
nnt®
un®
e

pthread_join() returns |«

exit ()
terminates "
main thread and
any peer threads

Could this race occur?

Main Thread
int i; void *thread(void *vargp)
for (1 = 0; i < 100; i++) { {
pthread create(&tid, NULL, int 1 = *((int *)vargp):
thread, &i); pthread detach(pthread self());
} save value (i) ;
return NULL;
}

m Race Test
" |f no race, then each thread would get different value of i
= Set of saved values would consist of one copy each of 0 through 99.

= Seerace.cC

Pros and Cons of Thread-Based
Designs

m + Easy to share data structures between threads
= e.g., logging information, file cache.

m + Threads are more efficient than processes.

m - Unintentional sharing can introduce subtle and hard-to-
reproduce errors!

" The ease with which data can be shared is both the greatest strength
and the greatest weakness of threads.

" Hard to know which data shared & which private
" Hard to detect by testing

= Probability of bad race outcome very low

= But nonzero!

Today

m Thread concepts
= Book details processes and |/O multiplexing
= pthreads

m Sharing
m Mutual exclusion
m Semaphores

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

"= The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Requires answers to the following questions:
" What is the memory model for threads?
= How are instances of variables mapped to memory?
"= How many threads might reference each of these instances?

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

Threads Memory Model

m Conceptual model:
= Multiple threads run within the context of a single process
= Each thread has its own separate thread context

= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

= All threads share the remaining process context
= Code, data, heap, and shared library segments of the process virtual address space

= QOpen files and installed handlers
m Operationally, this model is not strictly enforced:

= Register values are truly separate and protected, but...
= Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Example Program to lllustrate Sharing

char **ptr; /* global */
int main ()
{
int 1i;
pthread t tid;
char *msgs[2] = {
"Hello from foo",
"Hello from bar"
}s;

ptr = msgs;

for (i = 0; i < 2; i++)
pthread create(&tid,
NULL,
thread,
(void *)1i);
pthread exit (NULL) ;

/* thread routine */
void *thread(void *vargp)

{
int myid = (int) wvargp;
static int cnt = 0;

printf (" [%d]: %s (svar=%d)\n",
myid, ptr[myid], ++cnt);

/

Peer threads reference main thread’s stack
indirectly through global ptr variable

Mapping Variable Instances to Memory

m Global variables
= Def: Variable declared outside of a function

= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute
= Each thread stack contains one instance of each local variable

m Local static variables

= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])

\

Local vars: 1 instance (1.m, msgs.m)

7

{

char **ptr; /* global *

int main ()

int i;

pthread t ¥id;

char *msgs[2] = {
"Hello from foo",
"Hello from bar"

};

pPtr = msgs;

for (i = 0; 1 < 2; i++)
pthread create(&tid,
NULL,
thread,
(void *)i);
pthread exit (NULL) ;

Local var: 2 instances (
myid.pO [peer thread 0’s stack],
myid.pl [peer thread 1’s stack]

| /

/* thread rougtine */
void *thread/fvoid *vargp)
{
int myid = (int)vargp;
static int cnt = 0;

printf (" [%d]/ %s (svar=%d)\n",
myid, gtr[myid], ++cnt);

/

Local static var: 1 instance (cnt [data])

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no
myid.pl no no yes

m Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

m ptr, cnt, and msgs are shared
m i and myid are not shared

Today

m Thread concepts
= Book details processes and |/O multiplexing
= pthreads

m Sharing
m Mutual exclusion
m Semaphores

badcnt. c: Improper Synchronization

volatile int cnt = 0; /* global */

int main(int argc, char **argv)
{
int niters = atoi(argv[1l])
pthread t tidl, tid2;

pthread create(&tidl, NULL,
thread, &niters);
pthread create(&tid2, NULL,
thread, &niters);
pthread join(tidl, NULL);
pthread join(tid2, NULL);

/* Check result */
if (cnt !'= (2 * niters))

printf ("BOOM! cnt=%d\n”, cnt);
else

printf ("OK cnt=%d\n", cnt);
exit (0) ;

/* Thread routine */
void *thread(void *vargp)

{

int i, niters = *((int *)wvargp);
for (i = 0; 1 < niters; i++)
cnt++;

return NULL;

linux> ./badcnt 10000
OK cnt=20000

linux> ./badent 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?

Assembly Code for Counter Loop

C code for counter loop in thread i

for

(1i=0;
cnt++;

i < niters;

i++)

Corresponding assembly code

movl
movl

cmpl

$rdi) , %ecx
$0, %$edx
%$ecx, sedx

cnt (%rip) , %eax
$eax
%eax,cnt (3rip)

TfedxT T T T T T T T T \

$ecx, %sedx

j1 .L11

.L13:

> Head (H))

Load cnt (L))
> Update cnt (U))
Store cnt (S)

> Tail (T;)

Concurrent Execution

m Key idea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %eax;is the content of %eax in thread i’s context

i (thread) instr, %eax, %eax, cnt

(AR
T

Thread 1
critical section

=3

Thread 2
critical section

=3

1 e (= O]
1

N

N

N
NININ|[=|

N

=R INININMNIN (== (-
dlHw(iclr|T|w|c|—

1
NNN[R|R|kkolo|o

[T
'

oK

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr;, %eax, %eax, cnt
1 H, - - 0
1 L, 0 - 0
1 U, 1 - 0
2 H, - - 0
2 L, - 0
1 S, 1 - 1
1 T, 1 - 1
2 U, - 1 1
2 S, - 1 1
2 T, - 1 1 Oops!

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %eax, %eax, cnt
1 H, 0
1 L, 0
2 H,

2 L, 0

2 U, 1

2 S, 1 1

1 U, 1

1 S, 1 1

1 T,

2 T, 1 Oops!

m We can analyze the behavior using a progress graph

Progress Graphs

Thread 2 A progress graph depicts
the discrete execution

state space of concurrent
Tz threads.

(L, S,)

¢ Each axis corresponds to
S, the sequential order of
instructions in a thread.

U, Each point corresponds to
a possible execution state
L, (Inst,, Inst,).
E.g., (L;, S,) denotes state
H, where thread 1 has

— Thread1 completed L, and thread
2 has completed S,.

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
state transitions that describes one
T ‘ possible concurrent execution of the
2 threads.
S, ‘ Example:
Hi,L1,Ul,H2,1L2, S1,T1,U2,S2,T2
U,
—_—
L [
f,]
M — Thread 1

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
section with respect to the
shared variable cnt
T,
r Instructions in critical
S, sections (wrt to some
critical shared variable) should not
section . be interleaved
wrt < U, Unsafe region
cnt Sets of states where such
L, interleaving occurs form
\ unsafe regions
H,
— Thread 1
H, L, U, S, 1
N\ /
'

critical section wrt cnt

Critical Sections and Unsafe Regions

Thread 2

safe

. o —: »]] o
Def: A trajectory is safe iff it does
T, not enter any unsafe region

9 e ®
S, | x Claim: A trajectory is correct (wrt
critical cnt) iff itis safe

section)
wrt < U, Unsafe region
ent @ o o —_—
unsafe
o o

@ T “— Thread 1

critical section wrt cnt

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they never have an unsafe trajectory.
= j.e., need to guarantee mutually exclusive access to critical regions

m Classic solution:
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
= Mutex and condition variables (Pthreads)
= Monitors (Java)

Today

m Thread concepts
= Book details processes and |/O multiplexing
= pthreads

m Sharing
m Mutual exclusion
m Semaphores

Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--;]
= Dutch for "Proberen" (test)
= V(s): [s++;]
= Dutch for "Verhogen" (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly

= Only one P or V operation at a time can modify s.
= When while loop in P terminates, only that P can decrement s

m Semaphore invariant: (s >=0)

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *sem, 0, unsigned int val);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions (used in book)

#include "csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem t *s); /* Wrapper function for sem post */

badcnt. c: Improper Synchronization

volatile int cnt = 0; /* global */

int main(int argc, char **argv)
{
int niters = atoi(argv[1l])
pthread t tidl, tid2;

pthread create(&tidl, NULL,
thread, &niters);
pthread create(&tid2, NULL,
thread, &niters);
pthread join(tidl, NULL);
pthread join(tid2, NULL);

/* Check result */
if (cnt !'= (2 * niters))

printf ("BOOM! cnt=%d\n”, cnt);
else

printf ("OK cnt=%d\n", cnt);
exit (0) ;

/* Thread routine */
void *thread(void *vargp)

{

int i, niters = *((int *)wvargp);
for (i = 0; 1 < niters; i++)
cnt++;

return NULL;

How can we fix this using
semaphores?

Using Semaphores for Mutual Exclusion

m Basicidea:

= Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).

= Surround corresponding critical sections with P(mutex) and
V(mutex) operations.

m Terminology:
" Binary semaphore: semaphore whose value is always 0 or 1
= Mutex: binary semaphore used for mutual exclusion
= P operation: “locking” the mutex
= V operation: “unlocking” or “releasing” the mutex
= “Holding” a mutex: locked and not yet unlocked.

= Counting semaphore: used as a counter for set of available
resources.

goodcnt. c: Proper Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile int cnt = 0; /* Counter */
sem t mutex; /* Semaphore that protects cnt */
sem init(&mutex, 0, 1); /* mutex = 1 */

m Surround critical section with P and V:

HEE (= W S sy A9 linux> ./goodcnt 10000
sem wait (&mutex) ; OK cnt=20000
cnt++; linux> ./goodcnt 10000
sem post (&mutex) ; OK cnt=20000

} linux>

Warning: It’s much slower
thanbadcnt.c.

Why Mutexes Work

Thread 2
1 1 0 0 0 0 1 1 Provide mutually exclusive
' * * * * * * . access to shared variable by
T, surrounding critical section
! o -0 o0 . ! . o with P and V operations on
V(s) : , Forbidden region : : semaphore s (initially set to 1)
s, ! ! o Semaphore invariant
L0 o0 e e e e WO 0 creates a forbidden region
U that encloses unsafe region
LA e L that cannot be entered by any
L trajectory.
210 0 1 1 1 0 0
P(s) 1 1 0 0 0 0 1 1
HZ
1 1 1
. T . Thread 1
NN H Ps) L U S V) T,
Initially

s=1

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

