Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

29 : Network Programming
April 29, 2013

Last Time: Client-Server Transaction

1. Client sends request

Server

Client)
/ process

process .

Resource

4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Last Time: Logical Structure of an internet

;
%

g’if

Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections:

= Point-to-point, full-duplex (2-way communication), and reliable.

m A socket is an endpoint of a connection
= Socket address is an IPaddress :port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically on client when client makes a
connection request

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

m A connection is uniquely identified by the socket addresses
of its endpoints (socket pair)
" (cliaddr:cliport, servaddr:servport)

Putting it all Together:
Anatomy of an Internet Connection

Client socket address Server socket address
128.2.194.242:51213 :80

/ \

P
<

Connection socket pair

(128.2.194.242:51213, :80)
Client host address Server host address
128.2.194.242
51213 is an ephemeral port 80 is a well-known port

allocated by the kernel associated with Web servers

Clients

m Examples of client programs
= Web browsers, £tp, telnet, ssh

m How does a client find the server?

® The IP address in the server socket address identifies the host
(more precisely, an adapter on the host)

= The (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that performs
that service.

= Examples of well know ports
= Port 7: Echo server
= Port 23: Telnet server
= Port 25: Mail server
= Port 80: Web server

Using Ports to Identify Services

Client host

Service request for
128.2.194.242:80
(i.e., the Web server)

Server host 128.2.194.242

Web server
(port 80)

Service request for
128.2.194.242:7
(i.e., the echo server)

v

Kernel

Echo server
(port 7)

Web server
(port 80)

Kernel

Echo server
(port 7)

Servers

m Servers are long-running processes (daemons)
" Created at boot-time (typically) by the init process (process 1)
® Run continuously until the machine is turned off

m Each server waits for requests to arrive on a well-known port
associated with a particular service
= Port 7: echo server
= Port 23: telnet server
= Port 25: mail server
" Port 80: HTTP server

m A machine that runs a server process is also often referred to
as a “server”

Server Examples
m Web server (port 80)

= Resource: files/compute cycles (CGl programs)
= Service: retrieves files and runs CGI programs on behalf of the client

m FTP server (20' 21) See /etc/services fora
= Resource: files comprehensive list of the port

® Service: stores and retrieve files mappings on a Linux machine

m Telnet server (23)

= Resource: terminal
= Service: proxies a terminal on the server machine

m Mail server (25)
= Resource: email “spool” file
= Service: stores mail messages in spool file

Sockets Interface

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols

m Provides a user-level interface to the network
m Underlying basis for all Internet applications

m Based on client/server programming model

Sockets

m What is a socket?
= To the kernel, a socket is an endpoint of communication

" To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix I/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

Client l‘ ‘l Server

clientfd serverfd

m The main distinction between regular file I/O and socket
1/0 is how the application “opens” the socket descriptors

Watching Echo Client / Server

ﬁ CaBturing from Microsoft -

File Edit View Go Capture Analyze Statistics Telephon)_r Tools Help

Beoed BEEXEE Aces»T L (EE QAQAD @#@M % B

Filter: \tcp.port eq 15213

257 a5
1799 21.
1800 21.
1801 21.
1816 22.
2301 29.
2302 29.
2316 29,

MNo. Time

883897
914380
916474
916534
1122253
053184
055004
253626

Source

128.237.252.163
128.237.252.163
128.2.220.10
128.2.220.10
128.237.252.163
128.237.252.163
128.2.220.10
128.237.252.163

Destination

128.
128.
128.
128.
128.
128.
128.
128.

2.220.10
2.220.10
237.252.163
237.252.163
2.220.10
2.220.10
237.252.163
2.220.10

TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP

‘v Expression... Clear Apply

[PSH,
[ACK]

ACK] Seq=1 Ack=1l win=65532

wun
wn
w
o
[a)]
Y V V V V vy v
|
Ln
[
=
w

[ACK] Seg=l Ack=l win=65532 Len=0

< |

n

Frame 1799: 72 hytes on wire (576 bits), 72 bytes captured (576 bits)
Ethernet II, Src: Intel_e3:54:e6 (00:16:ea:e3:54:e6), Dst: Carnegie_20:00:64 (0B:00:7f:20:00:64)
Internet Protocol, Src: 128.237.252.163 (128.237.252.163), Dst: 128.2.220.10 (128.2.220.10)

Transmission

control Protocol, Src Port:

55306 (55306), DSt Port: 15213 (15213), sSeq: 1, ack: 1, Len: 18

13

Seg=1 Ack=19 win=5888 Len=0%
55306 [PSH, ACK] Seg=1 Ack=19 win=5888
[ACK] sSeq=19 Ack=19 win=65516 Len
15213 [PSH, ACK] Seq=19 Ack=19 win=6551
55306 [PSH, ACK] Seq=19 Ack=43 Win=5888
15213 [ACK] Seq=43 Ack=43 win=65492 Len

-

E]

-

0000 08 00 7f
0010 00 3a 2c¢
0020 dc 0a d8
0030 3f ff 96
0040 6d 65 73

20 00 64 00 16
7a 40 00 80 06
0a 3b 6d f4 a4
8b 00 00 68 &5
73 61l 67 65 0a

ea 23 54 e6 08 00 45 00
f4 a5 80 ed fc a3 80 02
09 6¢c 75 de 71 6a 50 18
72 65 20 69 73 20 61 20

- .d.. ..T...E.
L1280, L.,
ceeosme. Jlulgip
e he re is a
message.

@ Microsoft: <live capture in progress > File: C:... | Packets: 6950 Displayed: 13 Marked: 0

Profile: Default

Ethical Issues

m Packet Sniffer
" Program that records network traffic visible at node

" Promiscuous mode: Record traffic that does not have this host as
source or destination

Overview of the Sockets Interface

Client Server
socket socket
bind
listen
Connection l
request
connect ["TTTTTTTTTooC > accept <
v A 4
Client / g send > recv <
Server l l . .
Session . Await connection
recv N send request from
next client
\ 4 v
EOF
close f------------- > recv
\ 4
close

Socket Address Structures

m Generic socket address:
= For address arguments to connect, bind, and accept

= Necessary only because C did not have generic (void *) pointers
when the sockets interface was designed

struct sockaddr {
unsigned short sa family; /* protocol family */
char sa data[l4]; /* address data. */

};

sa family

~
Family Specific

Socket Address Structures

m Internet-specific socket address:

" Must cast (sockaddr in *)to(sockaddr *)for connect,
bind, and accept

struct sockaddr in
unsigned short
unsigned short
struct in addr
unsigned char

{
sin family;
sin_port;
sin addr;

sin zero[8];

/*
/*
/*
/*

address family (always AF_INET) */
port num in network byte order */
IP addr in network byte order */

pad to sizeof (struct sockaddr) */

sin_port

sin_addr

AF INET

o,o0,0j]0|j0|0]|]O0]|O

sa_family _

sin family

~
Family Specific

Creating a TCP socket

m socket creates a socket descriptor on the client
= Just allocates & initializes some internal data structures
" AF INET: indicates that the socket is associated with Internet protocols
" SOCK_ STREAM: selects a reliable byte stream connection
= provided by TCP

int clientfd; /* socket descriptor */
clientfd = socket (AF_INET, SOCK STREAM, 0);
if (clientfd < 0)

die with error (“socket() error”);

/* check errno for cause of error */

. <more>

Closing a TCP socket

close(clientfd) ;

Client: Connecting to a TCP socket

m Finally the client creates a connection with the server
= Client process suspends (blocks) until the connection is created

= After resuming, the client is ready to begin exchanging messages with the
server via Unix I/O calls on descriptor client£fd

int clientfd; /* socket descriptor */
struct sockaddr in serveraddr; /* server address */

/* Establish a connection with the server */
int result;
result = connect(clientfd, (struct sockaddr *)&serveraddr,
sizeof (serveraddr)) ;
if (result < 0)
die with error("recv() failed");

Client: Send string to Server

m Arguments
= Sock — socket file descriptor
" Input_string - string to send
= Length of string
= QOptional flags

send (clientfd, (void *)input string, strlen(input string), 0);

Client: Receive message from server

m Arguments
= sock —socket file descriptor

received_string - string to send

Size of the received_string variable

Optional flags

m Returns
= Number of bytes received

received bytes = recv(clientfd, (void *)received string,
sizeof (received string), 0);

if (received bytes < 0)
die with error("recv() failed");

received string[sizeof (received string)-1] = “\0’ ;

Server: Receive message from client

m Arguments
= sock —socket file descriptor

received_string - string to send

Size of the received_string variable

Optional flags

m Returns
= Number of bytes received

received bytes = recv(sock, (void *)received string,
sizeof (received string), 0);

if (received bytes < 0)
die with error("recv() failed");

received string[sizeof (received string)-1] = “\0’ ;

Overview of the Sockets Interface

open_clientfd <

Client

socket

connect

Connection
request

Server

socket

'

bind

'

listen

> open_listenfd

'

accept

m Office Telephone Analogy for Server

= Socket:
= Bind:
= Listen:
" Accept:

Buy a phone

Tell the local administrator what number you want to use

Plug the phone in

Answer the phone when it rings

Server: Binding to an address

m bind associates the socket with the socket address we just
created

int listenfd; /* listening socket */
struct sockadd:_in serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */
int bind result =
bind(listenfd, (struct sockaddr *) &serveraddr,sizeof (serveraddr))

if (bind result < 0)
die with error (“bind() failed”);

Server: Listen for connections

m listen indicates that this socket will accept connection
(connect) requests from clients

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept connection requests */
int listen result = listen(listenfd, 5);
if (listen result < 0)

die with error(“listen failed”);

Echo Server: Main Loop

m The server loops endlessly, waiting for connection
requests, then reading input from the client, and echoing
the input back to the client.

main() {
/* create and configure the listening socket */

while (1) {
/* accept(): wait for a connection request */
/* Read and echo input lines from client */
/* close(): close the connection */

Echo Server: accept

m accept () blocks waiting for a connection request

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr in clientaddr;

int clientlen;

clientlen = sizeof (clientaddr) ;
connfd = accept(listenfd, (struct sockaddr *)&clientaddr,
&clientlen) ;

m accept returns a connected descriptor (connfd) with
the same properties as the listening descriptor
(Listenfd)

m Returns when the connection between client and server is created
and ready for I/O transfers

m All 1/0 with the client will be done via the connected socket

m accept alsofillsin client’s IP address

Echo Server: accept lllustrated

Client l

clientfd

Connection

clientfd

Client L‘

listenfd (3)

T Server

listenfd (3)

------ >
Server

listenfd (3)

clientfd

. I Server

connfd (4)

1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

2. Client makes connection request by
calling and blocking in connect

3. Server returns connfd from
accept. Client returns from connect.

Connection is now established between
clientfdand connfd

For More Information

m W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1, Second
Edition, Prentice Hall, 1998

" THE network programming bible

m Unix Man Pages
" Good for detailed information about specific functions

m Complete versions of the echo client and server are
developed in the text
= Updated versions linked to course website
= Feel free to use this code in your assignments

