CSSE132 Introduction to Computer Systems

25: Exceptions

April 22, 2013

Today

Exceptional Control Flow

Control Flow

- Processors do only one thing:
 - From startup to shutdown, a CPU simply reads and executes (interprets) a sequence of instructions, one at a time
 - This sequence is the CPU's control flow (or flow of control)

Altering the Control Flow

- Up to now: two mechanisms for changing control flow:
 - Jumps and branches
 - Call and return

Both react to changes in *program state*

- Insufficient for a useful system:
 Difficult to react to changes in system state
 - data arrives from a disk or a network adapter
 - instruction divides by zero
 - user hits Ctrl-C at the keyboard
 - System timer expires
- System needs mechanisms for "exceptional control flow"

Exceptional Control Flow

- Exists at all levels of a computer system
- Low level mechanisms
 - Exceptions
 - change in control flow in response to a system event (i.e., change in system state)
 - Combination of hardware and OS software

Higher level mechanisms

- Process context switch
- Signals
- Nonlocal jumps: setjmp()/longjmp()
- Implemented by either:
 - OS software (context switch and signals)
 - C language runtime library (nonlocal jumps)

Exceptions

An exception is a transfer of control to the OS in response to some event (i.e., change in processor state)

■ Examples: div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

Interrupt Vectors

- Each type of event has a unique exception number k
- k = index into exception table(a.k.a. interrupt vector)
- Handler k is called each time exception k occurs

Asynchronous Exceptions (Interrupts)

Caused by events external to the processor

- Indicated by setting the processor's interrupt pin
- Handler returns to "next" instruction

Examples:

- I/O interrupts
 - hitting Ctrl-C at the keyboard
 - arrival of a packet from a network
 - arrival of data from a disk
- Hard reset interrupt
 - hitting the reset button
- Soft reset interrupt
 - hitting Ctrl-Alt-Delete on a PC

Synchronous Exceptions

Caused by events that occur as a result of executing an instruction:

Traps

- Intentional
- Examples: system calls, breakpoint traps, special instructions
- Returns control to "next" instruction

Faults

- Unintentional but possibly recoverable
- Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
- Either re-executes faulting ("current") instruction or aborts

Aborts

- unintentional and unrecoverable
- Examples: parity error, machine check
- Aborts current program

Trap Example: Opening File

- User calls: open (filename, options)
- Function open executes system call instruction int

- OS must find or create file, get it ready for reading or writing
- Returns integer file descriptor

Fault Example: Page Fault

- User writes to memory location
- That portion (page) of user's memory is currently on disk

```
int a[1000];
main ()
{
    a[500] = 13;
}
```

```
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
```


- Page handler must load page into physical memory
- Returns to faulting instruction
- Successful on second try

Fault Example: Invalid Memory Reference

```
int a[1000];
main ()
{
    a[5000] = 13;
}
```

```
80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360
```


- Page handler detects invalid address
- Sends SIGSEGV signal to user process
- User process exits with "segmentation fault"

Exception Table IA32 (Excerpt)

Exception Number	Description	Exception Class
0	Divide error	Fault
13	General protection fault	Fault
14	Page fault	Fault
18	Machine check	Abort
32-127	OS-defined	Interrupt or trap
128 (0x80)	System call	Trap
129-255	OS-defined	Interrupt or trap

Check Table 6-1:

http://download.intel.com/design/processor/manuals/253665.pdf