Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

25 : Exceptions
April 22, 2013

Today

m Exceptional Control Flow

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
) inst
Time .2
inst;
inst,
<shutdown>

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return
Both react to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= data arrives from a disk or a network adapter
" instruction divides by zero
= user hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Exceptional Control Flow

m Exists at all levels of a computer system
m Low level mechanisms

" Exceptions

= change in control flow in response to a system event
(i.e., change in system state)

" Combination of hardware and OS software

m Higher level mechanisms
= Process context switch
= Signals
= Nonlocal jumps: setjmp()/longjmp()
"= Implemented by either:
= OS software (context switch and signals)
= Clanguage runtime library (nonlocal jumps)

Exceptions

m An exception is a transfer of control to the OS in response to
some event (i.e., change in processor state)

User Process 0S

]

event — |_current? exception .
|_next exception processing
by exception handler

[

* return to |_current
*return to |_next
*abort

m Examples:
div by 0, arithmetic overflow, page fault, |/O request completes, Ctrl-C

Interrupt Vectors

Exception
numbers

0
1

n-1

Exception

Table

code for
exception handler 0

code for
exception handler 1

¢ _~
o

./

code for
exception handler 2

.\

code for
exception handler n-1

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:

= |/O interrupts
= hitting Ctrl-C at the keyboard
= arrival of a packet from a network
= arrival of data from a disk

" Hard reset interrupt
= hitting the reset button

= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= |ntentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= unintentional and unrecoverable

= Examples: parity error, machine check

= Aborts current program

Trap Example: Opening File

m Usercalls: open(filename, options)
m Function open executes system call instruction int

0804d070 < libc open>:

804d082: cd 80 int S0x80

804d084: 5b pop %ebx
User Process 0S
int ¥ exception R

pop - .
returns

v

m OS must find or create file, get it ready for reading or writing
m Returns integer file descriptor

10

Fault Example: Page Fault

m User writes to memory location

m That portion (page) of user’s memory
is currently on disk

int a[1000];
main ()
{

a[500] = 13;
}

80483b7: c7 05 10 94 04 08 0d

movl

$0xd, 0x8049d10

User Process 0OS

exception: page fault

A\ 4

v

m Page handler must load page into physical memory

m Returns to faulting instruction
m Successful on second try

movl >
Create page and
returns load into memory

1"

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process 0OS

l exception: page fault

movl >

detect invalid address

 / _

> signal process

m Page handler detects invalid address
m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-127 OS-defined Interrupt or trap
128 (0x80) System call Trap

129-255 OS-defined Interrupt or trap

Check Table 6-1:
http://download.intel.com/design/processor/manuals/253665.pdf

13

