Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

24 : Compilers and Linking
April 18, 2013

Today

m Compiler Optimizations
m Optimization Blockers
m Linking

Optimizing Compilers

m Provide efficient mapping of program to machine
= register allocation
= code selection and ordering (scheduling)
= dead code elimination

m Don’t (usually) improve asymptotic efficiency (Big-O)
m Have difficulty overcoming “optimization blockers”

= potential memory aliasing

= potential procedure side-effects

m Operate under fundamental constraint
= Must not cause any change in program behavior

= Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Generally Useful Optimizations

m Optimizations that you or the compiler should do regardless

of processor / compiler

m Code Motion
= Reduce frequency with which computation performed

= |f it will always produce same result
= Especially moving code out of loop

void set row(double *a, double *b,
long i, long n)
{
long j;
int ni = n*i;

long j;
for (j = 0; j < n; j++)
for (j = 0; j < n; j++)

a[n*i+j] = b[]j]’ [ni+i] b[i]
alni+j] = b[jl;

Reduction in Strength

= Replace costly operation with simpler one
Shift, add instead of multiply or divide
lo*x ——> X << 4

= Utility machine dependent
= Depends on cost of multiply or divide instruction
— On Intel Nehalem, integer multiply requires 3 CPU cycles

= Recognize sequence of products

Share Common Subexpressions

= Reuse portions of expressions

= Compilers often not very sophisticated in exploiting arithmetic

properties
/* Sum neighbors of i,j */ long inj = i*n + j;
up = val[(i-1)*n + J 1; up = val[in]j - n];
down = wval[(i+l)*n + j 1; down = wval[in]j + n];
left = wval[i*n + j-11; left = wval[inj - 1];
right = val[i*n + j+1]; right = val[inj + 1];
sum = up + down + left + right; sum = up + down + left + right;
3 multiplications: i*n, (i-1)*n, (i+1)*n 1 multiplication: i*n
leaq 1(%rsi), %$rax # i+l imulqg $rcx, %$rsi # i*n
leaq -1(%rsi), %r8 # i-1 addgq $rdx, %rsi # i*n+j
imulqg %rcx, %rsi # i*n movq $rsi, Srax # i*n+j
imulqg %rcx, %rax # (i+1l)*n subq $rcx, $rax # i*n+j-n
imulg %rcx, %r8 # (i-1)*n leaq ($rsi,%rcx), %rcx # i*n+j+n
addg $rdx, %rsi # i*n+j
addgq $rdx, %$rax # (i+1) *n+j
addg $rdx, %r8 # (i-1) *n+j

Today

m Compiler Optimizations
m Optimization Blockers
m Linking

Optimization Blocker #1: Procedure Calls

m Procedure to Convert String to Lower Case

void lower (char *s)
{
int i;
for (1 = 0; 1 < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] -= ('A' - 'a'");

= Extracted from 213 lab submissions, Fall, 1998

Improving Performance

void lower2 (char *s)
{

int 1i;

int len = strlen(s);

for (i = 0; i < len; i++)

if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');

}

" Move call to strlen outside of loop
= Since result does not change from one iteration to another
= Form of code motion

Lower Case Conversion Performance

" Time doubles when double string length

" Linear performance of lower2

CPU seconds

200 1

180
160
140
120
100
80
60
40
20
0

* A
| ‘ L 4 * lower2

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

1"

Optimization Blocker: Procedure Calls

m Why couldn’t compiler move strlen out of inner loop?

Procedure may have side effects
= Alters global state each time called

Function may not return same value for given arguments

= Depends on other parts of global state

» Procedure 1lower could interact with strlen

m Warning:

Compiler treats procedure call as a black box

Weak optimizations near them

m Remedies:

Use of inline functions
= GCC does this with —02
= See web aside ASM:OPT
Do your own code motion

int lencnt = 0;
size t strlen(const char *s)

{

size t length = 0;
while (*s '= '\0') {
s++; length++;

}
lencnt += length;
return length;

12

Memory Matters

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) ({

long i, j;
for (i = 0; i < n; i++) {
b[i] = O0;

for (J = 0; j < n; j++)
b[i] += a[i*n + j];

sum rowsl inner loop

.L53:
addsd ($rcx), %$xmmO # FP add
addg $8, %$rcx
decq Srax
movsd $xmm0, (%rsi,%r8,8) # FP store
jne .L53

" Code updatesb [i] on every iteration
" Why couldn’t compiler optimize this away?

Memory Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) ({

long i, j;
for (i = 0; i < n; i++) {
b[i] = O0;

for (J = 0; j < n; j++)
b[i] += a[i*n + j];

double A[9] =

{o, 1, 2,
4, 8, 16}, B overlaps Al
32, 64, 128};
double B[3] = A+3;
&

sum rowsl(A, B, 3);

" Code updatesb [i] on every iteration

Value of B:

init: [4, 8,
i=20: [3, 8,

i=1: [3, 22,

i=2: [3, 22,

16]

16]

16]

224]

= Must consider possibility that these updates will affect program

behavior

Removing Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rows2 (double *a, double *b, long n) ({
long i, j;
for (i = 0; i < n; i++) {
double val = 0;
for (J = 0; j < n; j++)
val += a[i*n + j];
b[i] = wval;

sum rows2 inner loop
.L66:
addsd (%$rcx) , %$xmmO # FP Add

addg $8, %$rcx
decq Srax
jne .L66

" No need to store intermediate results

Optimization Blocker: Memory Aliasing

m Aliasing
= Two different memory references specify single location
= Easy to have happenin C
= Since allowed to do address arithmetic
= Direct access to storage structures
= Get in habit of introducing local variables
= Accumulating within loops
= Your way of telling compiler not to check for aliasing

16

Getting High Performance

Good compiler and flags

Don’t do anything stupid
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references

= ook carefully at innermost loops (where most work is done)

Tune code for machine
= Exploit instruction-level parallelism
= Avoid unpredictable branches
" Make code cache friendly

See book for more details (branch prediction, instruction
parallelism, etc.)

17

Today

m Compiler Optimizations
m Optimization Blockers
m Linking

18

Static Linking

m Programs are translated and linked using a compiler driver:
" unix> gcc -02 -g -0 p main.c swap.c
" ynix> ./p

main.c swap.c Source files
Translators Translators
(cpp, ccl, as) (cpp, ccl, as)
malin o swalp o Separately compiled
1 l relocatable object files
Linker (Id)

1 Fully linked executable object file
P (contains code and data for all functions
definedin main.c and swap.c)

19

Why Linkers?

m Reason 1: Modularity

" Program can be written as a collection of smaller source files,
rather than one monolithic mass.

® Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

20

Why Linkers? (cont)

m Reason 2: Efficiency

"= Time: Separate compilation
= Change one source file, compile, and then relink.
= No need to recompile other source files.

= Space: Libraries
= Common functions can be aggregated into a single file...

= Yet executable files and running memory images contain only
code for the functions they actually use.

21

What Do Linkers Do?

m Step 1. Symbol resolution

" Programs define and reference symbols (variables and functions):
= void swap() {..} /* define symbol swap */
= swap () ; /* reference symbol a */

= int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored (by compiler) in symbol table.
= Symbol table is an array of structs
= Each entry includes name, size, and location of symbol.

" Linker associates each symbol reference with exactly one symbol definition.

22

What Do Linkers Do? (cont)

m Step 2. Relocation
= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to
their final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new
positions.

23

Three Kinds of Object Files (Modules)

m Relocatable object file (. o file)

® Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.

= Each .o fileis produced from exactly one source (. c) file

m Executable object file (a . out file)

= Contains code and data in a form that can be copied directly into
memory and then executed.

m Shared object file (. so file)

= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

24

Executable and Linkable Format (ELF)

m Standard binary format for object files

m Originally proposed by AT&T System V Unix
= |Later adopted by BSD Unix variants and Linux

m One unified format for

= Relocatable object files (. 0),
= Executable object files (a.out)
= Shared object files (. so)

m Generic name: ELF binaries

25

Shared Libraries

m Static libraries group many functions in one file
= Duplicate data in stored executables (every function need std libc)
= Duplicate data in the running executables

= Minor bug fixes of system libraries require each application to explicitly
relink

m Modern solution: Shared Libraries

" QObject files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time

= Also called: dynamic link libraries, DLLs, . so files

26

Shared Libraries (cont.)

m Dynamic linking can occur when executable is first loaded
and run (load-time linking).

= Common case for Linux, handled automatically by the dynamic linker
(ld-linux.so).

= Standard C library (1ibc. so) usually dynamically linked.

m Dynamic linking can also occur after program has begun
(run-time linking).
= |n Linux, this is done by calls to the dlopen () interface.
= Distributing software.
= High-performance web servers.
= Runtime library interpositioning.

m Shared library routines can be shared by multiple processes.

®= More on this when we learn about virtual memory

27

